Fuzzy Metric Dimension of Fuzzy Hypercube Q_n and Fuzzy Boolean Graphs

M. Thusleem Furjana, M. Bhanumathi

Abstract: Let $G = (V, E, \mu)$ be a fuzzy graph. Let M be a subset of V. M is said to be a fuzzy metric basis of G if for every pair of vertices $x, y \in V - M$, there exists a vertex $w \in M$ such that $d(w, x) \neq d(w, y)$. The number of elements in M is said to be fuzzy metric dimension (FMD) of G and is denoted by $\beta(G)$. The elements in M are called as source vertices. In this paper, we study the fuzzy metric dimension of fuzzy hypercube Q_n, fuzzy Boolean Graph $BG_2(G)$ and fuzzy Boolean Graph $BG_4(G)$.

Keywords: fuzzy Boolean graph $BG_2(G)$, fuzzy Boolean graph $BG_4(G)$, fuzzy hypercube Q_n, fuzzy metric dimension.

I. INTRODUCTION

A fuzzy graph $[7]$ G is a 2-tuple (V, E) where V is a nonempty set of vertices $\{v_1, v_2, \ldots, v_n\}$ and E is the nonempty finite set of edges such that $\mu: V \rightarrow [0, 1]$ and $\sigma: V \times V \rightarrow [0, 1]$ where $\sigma(v_i, v_j) \leq \min(\mu(v_i), \mu(v_j))$ for $i \neq j$.

Any for $v \in V$, if $\mu(v) = 0$ then we call v as an active vertex. If $\mu(v) > 0$ then we call v as an inactive vertex. We assume that all the vertices as active vertices. We use the notation e_{ij} to denote the edge connecting the vertices v_i and v_j. The weight of the edge e_{ij} is given by $\sigma(v_i, v_j)$ and is denoted by $w(e_{ij})$.

A fuzzy path $[7]$ from a vertex v_i to a vertex v_j in a fuzzy graph is a sequence of distinct vertices and edges starting from v_i and ending at v_j. This is denoted by $P(v_i, v_j) = P$.

If v_i and v_j coincide in a fuzzy path P then we call this sequence as a fuzzy cycle. Let P_{ij} be the set of all fuzzy paths P from v_i to v_j. For $v_i, v_j \in V$, we define the fuzzy set $\mu_{ij}: P_{ij} \rightarrow [0, 1]$ by $\mu_{ij}(P) = \min_{e_{ij} \in E} w(e_{ij})$ where $P \in P_{ij}$. Here $\mu_{ij}(P)$ is called the weight of the path P. The fuzzy path $P \in P_{ij}$ for which $\mu_{ij}(P)$ is minimum, is called as a fuzzy shortest path (FSP) between v_i and v_j. The weight of this FSP is denoted by $d'(v_i, v_j)$. Thus, d' can be viewed as a fuzzy set, $d': V \times V \rightarrow [0, 1]$ where $d'(v_i, v_j) = \min_{P \in P_{ij}} (\mu_{ij}(P))$ and $d'(v_i, v_i) = 0$.

For any two fuzzy shortest paths P and Q between v_i and v_j, we consider the path with lesser number of intermediate vertices.

Revised Manuscript Received on February 27, 2020.

* Correspondence Author

M. Thusleem Furjana, Research Scholar, Department of mathematics, Government Arts college for Women (Autonomous), Pudukkottai, affiliated to Bharathidasan University (Tiruchirappalli), Tamilnadu, India. Email: tfurjana@yahoo.com

M. Bhanumathi*, Principal (Retd.), Government Arts College for Women, Sivagangai, India. Email: bhanu_ksp@yahoo.com

In 1995, George and Veeramani defined the 3-tuple (V, d^*, t) as $d^*(v_i, v_j, t) = \frac{t}{t + d'(v_i, v_j)}$, where t is the number of intermediate vertices in the shortest path from which d^* is calculated [5]. $N(v_i, v_j)$ is defined as the number of intermediate vertices between v_i and v_j in fuzzy shortest path (FSP) and $d^*(v_i, v_j, t)$ is denoted as $d^*(v_i, v_j, t)$.

Let $G = (V, E, \mu)$ be a fuzzy graph. Let M be a subset of V. M is said to be a fuzzy metric basis of G if for every pair of vertices $x, y \in V - M$, there exists a vertex $w \in M$ such that $d(w, x) \neq d(w, y)$. The number of elements in M is said to be fuzzy metric dimension (FMD) of G and is denoted by $\beta(G)$. The elements in M are called as source vertices. In 2012, Praba et al introduced and defined the fuzzy metric dimension of fuzzy graphs [7]. In 2016, Bhanumathi and Thusleem Furjana studied the fuzzy metric basis of some standard fuzzy graphs G, fuzzy metric basis of Total graph, middle graph and subdivision graph of some standard fuzzy graphs G [1], [2]. Also they have determined the fuzzy metric basis of fuzzy Cartesian product of some fuzzy graphs [3]. In this paper, we determine some new bounds for the fuzzy metric dimension of fuzzy hypercube Q_n, Q_2, Q_3. Also, we study the fuzzy metric basis of fuzzy Boolean graph $BG_2(G)$ for some standard fuzzy graphs G and fuzzy Boolean graph $BG_2(G)$ for some standard fuzzy graphs G.

Theorem 1.1 [5] d' is a metric.

Theorem 1.2 [7] If G is a path then $\beta(G) = 1$.

Theorem 1.3 [7] If P_{ij} is a path on n vertices and v_k is an intermediate vertex in P_{ij}, v_i and v_j are two vertices on either side of v_k then $\tilde{d}(v_k, v_i) = \tilde{d}(v_k, v_j)$ if and only if $N(v_k, v_i) = N(v_k, v_j)$, and $d'(v_k, v_i) = d'(v_k, v_j)$.

Theorem 1.4 [7] Let P_{ij} be a path on n vertices and v_k is an intermediate vertex in P_{ij}. If v_i and v_j are two vertices on either side of v_k such that $N(v_k, v_i) = N(v_k, v_j)$ then $\tilde{d}(v_k, v_i) = \tilde{d}(v_k, v_j)$ if and only if $d'(v_k, v_i) = d'(v_k, v_j)$.

Theorem 1.5 [7] If C_n is fuzzy cycle then $\beta(C_n) \leq 2$.

Definition 1.6 A graph G is said to be decomposable [4] into Hamiltonian cycles if its edge set can be partitioned into Hamiltonian cycles. A graph is said to admit cycle decomposition (respectively Hamiltonian decomposition) if its edge set can be partitioned into cycles (respectively Hamiltonian cycles).
Let C_n denote the cycle of length $n \geq 3$. If C_m and C_n have vertex sets $\{u_1, u_2, ..., u_m\}$ and $\{v_1, v_2, ..., v_n\}$ respectively, we denote the vertices and edges of $C_m \times C_n$ by $\{u_i, v_j\}$ for $i = 1, 2, ..., m$ and $j = 1, 2, ..., n$, and $|E(C_m \times C_n)| = 2nm$. Thus, if $C_m \times C_n$ admits Hamiltonian decomposition then the number of cycles in such decomposition is two. Two Hamiltonian cycles in a graph are said to be edge-disjoint if there exists no common edges in them.

Theorem 1.7 [8] The binary n-cube, with n even or equivalently the product of (n/2) cycles, $C_4 \times C_4 \times \cdots \times C_4$ can be partitioned into (n/2) Hamiltonian cycles.

Definition 1.8 A star [6] in a fuzzy graph consist of two node sets V and U with $|V| = 1$ and $|U| > 1$, such that $\mu(v, u_i) > 0$ and $\mu(u_i, u_i) = 0$, $1 \leq i \leq n$. It is denoted by $S_{1,n}$.

II. FUZZY METRIC DIMENSION OF FUZZY HYPERCUBE.

In this section we determine fuzzy metric basis of fuzzy Hypercube Q_n for $n = 4$ and $n = 6$.

Definition 2.1 The fuzzy hypercube or n-fuzzy cube Q_n is the graph whose vertex set is the set of all n-dimensional Boolean vectors in which two vertices are joined if and only if they differ in exactly one coordinate.

A. Fuzzy Metric Dimension of Hypercube Q_n.

Theorem 2.1 If $G = Q_4$, then $2 \leq \beta(G) \leq 4$.

Proof: $G = Q_4 = K_2 \times K_2 \times K_2 \times K_2 = C_4 \times C_4$. Let $V_1 = \{u_1, u_2, u_3, u_4\}$ be the vertex set of one C_4 and $V_2 = \{v_1, v_2, v_3, v_4\}$ be the vertex set of the other C_4. Then $V(G) = V_1 \times V_2 = \{(u_1, v_1), (u_2, v_2), (u_3, v_3), (u_4, v_4)\}$. Q_4 can be partitioned into two Hamiltonian fuzzy cycles as follows:

$C_1: (u_1, v_1)u_2v_4u_3v_3u_4v_2u_1v_1u_1\ v_2v_3u_4v_4u_3v_3u_2v_2u_1v_1u_1$

$C_2: (u_1, v_1)u_2v_4u_3v_3u_4v_2u_1v_1u_1v_2v_3u_4v_3u_3v_2u_2v_2u_1v_1u_1$

We will write $Q_4 = C_4 \times C_4$ as the union of two Hamiltonian fuzzy cycles, that is $C_4 \times C_4 = C_1 \cup C_2$

In C_1, take u_1v_1 as a source vertex, let P_1 be the path $u_1v_1u_2v_4u_3v_3u_4v_2u_1v_1u_1$, and P_2 be the path $u_1v_1u_2v_4u_3v_3u_4v_2u_1v_1u_1$. In C_2, take u_1v_1 as a source vertex. Let P_1 be the path $u_1v_1u_2v_4u_3v_3u_4v_2u_1v_1u_1$, and P_2 be the path $u_1v_1u_2v_4u_3v_3u_4v_2u_1v_1u_1$. Here we calculate the fuzzy metric dimension of $C_4 \times C_4$.

Case i:

In C_1, let u_jv_j and u_iv_i $(i = 1, 2, 3, 4)$ be two vertices on C_1 such that both u_jv_j and $u_iv_i \in P_1$ or P_2 $(i = 1, 2, 3, 4)$ and $i = j \neq 1$ will be in same path. Thus, $\beta(C_1) = 1$. In C_2, let u_jv_j and u_iv_i $(i = 1, 2, 3, 4)$ be two vertices on C_2 such that both u_jv_j and $u_iv_i \in P_1$ (or P_2) $(i = 1, 2, 3, 4)$ and $i = j \neq 1$ will be in same path. Thus, $\beta(C_2) = 1$. Thus, $\beta(C_1 \times C_2) = \beta(C_1) \cup \beta(C_2) = \{u_1v_1, u_1v_1\}$. Therefore, $\beta(Q_4) = 2$.

Case ii:

In C_1, if the two vertices $u_i\ v_i$ and $u_j\ v_j$ $(i = 1, 2, 3, 4$ and $i \neq j = 1)$ belongs to either P_1 (or P_2), then by case (i) we get, $\beta(C_1) = 1$. In C_2, if $u_i\ v_i$ and $u_j\ v_j$ $(i = 1, 2, 3, 4$ and $i \neq j = 1)$ such that the FSP for $u_i\ v_i$ from source vertex u_1v_1 is through P_2 and FSP for $u_j\ v_j$ from source vertex u_1v_1 is through P_1, then $\beta(C_1) = 1$. Hence, $\beta(C_2) = 2$ and $\beta(C_1 \times C_2) = \{u_1v_1, u_1v_1\}$. Therefore, $\beta(Q_4) = 2$.

Similarly, we get metric basis of C_2 as $\{u_1v_1, u_1v_1\}$ and $\beta(C_1 \times C_2) = \{u_1v_1, u_1v_1\}$. Hence, $\beta(Q_4) = 2$.
Include \(u_i, v_i \) as another source vertex so that \(N(u_i, v_i) \neq N(u_i, v_i) \) or \(N(u_i, v_i) \neq N(u_i, v_i) \). Continuing this process for all three paths in \(Q_n \), we get three source vertices for \(Q_4 \). \(\mathcal{M} = \{ u_i, v_i, u_i, v_i \} \). Hence, \(\tilde{\beta}(Q_4) \leq 3 \).

B. Fuzzy Metric Dimension of Hypercube \(Q_5 \)

Theorem 2.3 If \(G = Q_n \), then \(\tilde{\beta}(G) \leq 4 \).

Proof: \(G = Q_2 \times Q_3 = C_4 \times C_4 \times C_4 \). If \(V_1 = \{ u_1, u_2, u_3, u_4 \} \) and \(V_2 = \{ v_1, v_2, v_3, v_4 \} \) such that \(V_1 \cap V_2 = \emptyset \), then \(V(G) = V_1 \times V_2 \) can be partitioned into four paths as follows:

\[
\begin{align*}
\mathcal{P}_1: & \quad u_1v_1x_1, u_1v_2x_1, u_1v_3x_1, u_1v_4x_1, u_1y_1x_1, u_1y_2x_1, u_1y_3x_1, u_1y_4x_1, \\
& \quad u_2v_1x_2, u_2v_2x_2, u_2v_3x_2, u_2v_4x_2, u_2y_1x_2, u_2y_2x_2, u_2y_3x_2, u_2y_4x_2, \\
& \quad u_3v_1x_3, u_3v_2x_3, u_3v_3x_3, u_3v_4x_3, u_3y_1x_3, u_3y_2x_3, u_3y_3x_3, u_3y_4x_3, \\
& \quad u_4v_1x_4, u_4v_2x_4, u_4v_3x_4, u_4v_4x_4, u_4y_1x_4, u_4y_2x_4, u_4y_3x_4, u_4y_4x_4.
\end{align*}
\]

In two paths \(P_1 \) and \(P_2 \), take \(u_1v_1x_1 \) as a source vertex. If two vertices \(u_iy_x \) or \(u_iy_x \) is through \(P_2 \), then \(\tilde{\beta}(Q_4) \leq 1 \). Include \(u_iy_x \) as another source vertex so that \(N(u_iy_x, u_iy_x) \neq N(u_iy_x, u_iy_x) \) or \(N(u_iy_x, u_iy_x) \neq N(u_iy_x, u_iy_x) \). Continuing this process for all four paths in \(Q_6 \), we get four source vertices for \(Q_6 \). \(\mathcal{M} = \{ u_i, v_i, u_i, v_i \} \). Hence, \(\tilde{\beta}(Q_6) \leq 4 \).

C. Fuzzy Metric Dimension of Hypercube \(Q_n \)

Theorem 2.4 If \(G = Q_n \), then \(\frac{n}{2} \leq \tilde{\beta}(G) \leq n \).

Proof: \(Q_n \) can be decomposed into \((n/2) \) Hamiltonian cycles, by Theorem 1.7. We get \(\frac{n}{2} \leq \tilde{\beta}(Q_n) \leq n \), by Theorem 1.5.

III. FUZZY METRIC DIMENSION OF FUZZY BOOLEAN GRAPHS \(BG_2(G) \) AND \(BG_2(G) \)

Let \(G(\sigma, \mu) \) be a fuzzy graph with its underlying set \(V \) and graph \(G^* = (\sigma^*, \mu) \). Let \(V(G) \) and \(E(G) \) be the vertex set and edge set of \(G^* \) respectively. The pair \(BG_2(G) = (\sigma_{BG_2(G)}, \mu_{BG_2(G)}) \) of \(G \) is defined as follows: Let the vertex set of \(BG_2(G) \) be \(V(G) \cup E(G) \). The fuzzy subset \(\sigma_{BG_2(G)} \) is defined on \(V(G) \cup E(G) \) as

\[
\sigma_{BG_2(G)}(u) = \sigma(u) \text{ if } u \in V(G) \quad \text{and} \quad \sigma_{BG_2(G)}(e) = \mu(e) \text{ if } e \in E(G)
\]
The fuzzy relation $\mu_{BG_2(G)}$ is defined as

$$\mu_{BG_2(G)}(u, v) = \mu(u, v)$$

if $u, v \in V(G)$ and $e = uv \in E(G)$

$$\mu_{BG_2(G)}(u, e) = 0$$

if $e = uv \notin E(G)$

$$\mu_{BG_2(G)}(e_i, e_j) = \mu(e_i) \land \mu(e_j)$$

if the edges e_i and e_j have no common incident vertex in G.

By the definition, $\mu_{BG_2(G)}(x, y) \leq \sigma_{BG_2(G)}(x) \land \sigma_{BG_2(G)}(y)$ for all $x, y \in V(G)$ and $E(G)$. Hence $\mu_{BG_2(G)}$ is a fuzzy relation on the fuzzy subset $\sigma_{BG_2(G)}$. Hence, the pair $BG_2(G)$: $(\sigma_{BG_2(G)}, \mu_{BG_2(G)})$ is a fuzzy graph and is termed as

Boolean fuzzy graph BG_2 of G - Second kind.

Similarly, the pair $BG_3(G)$: $(\sigma_{BG_3(G)}, \mu_{BG_3(G)})$ of G is defined as follows. The fuzzy subset $\sigma_{BG_3(G)}$ is defined on $V(G) \cup E(G)$ as

$$\sigma_{BG_3(G)}(u) = \sigma(u)$$

for all $u \in V(G)$

$$\sigma_{BG_3(G)}(e) = \sigma(e)$$

for all $e \in E(G)$

The fuzzy relation $\mu_{BG_3(G)}$ is defined as

$$\mu_{BG_3(G)}(u, v) = 0$$

if $u, v \in V(G)$

$$\mu_{BG_3(G)}(u, e) = \mu(e)$$

if $e \in E(G)$ and e is incident with u in G.

$$\mu_{BG_3(G)}(e_i, e_j) = \mu(e_i) \land \mu(e_j)$$

if the edges e_i and e_j have no common incident vertex in G.

By the definition, $\mu_{BG_3(G)}(x, y) \leq \sigma_{BG_3(G)}(x) \land \sigma_{BG_3(G)}(y)$ for all $x, y \in V(G)$ and $E(G)$. Hence $\mu_{BG_3(G)}$ is a fuzzy relation on the fuzzy subset $\sigma_{BG_3(G)}$. Hence, the pair $BG_3(G)$: $(\sigma_{BG_3(G)}, \mu_{BG_3(G)})$ is a fuzzy graph and is termed as

Boolean fuzzy graph BG_3 of G - Third Kind.

In this section, we determine fuzzy metric basis of Fuzzy Boolean Graph $BG_2(G)$ for some standard graphs of G.

Fuzzy Metric Dimension of $BG_2(G)$

Theorem: If $G = BG_2(P_n)$ ($n > 3$), then $\tilde{P}(G) \leq \left\lfloor \frac{n + 2}{2} \right\rfloor$, when n is odd.

$$\left\lfloor \frac{n + 3}{2} \right\rfloor$$

when n is even.

Proof: Let $v_1, v_2, v_3, \ldots, v_n$ be the vertices of P_n and let $v_1v_2 = e_{12}$, $v_2v_3 = e_{23}$, ..., $v_{n-1}v_n = e_{n-1,n}$ be the edges of P_n. We denote $e_1 = e_1$, $e_2 = e_2$, ..., $e_{n-1} = e_n$. Edges of $BG_2(P_n)$ can be decomposed into P_{n+1}, P_{2n+1}.

Case i: n is odd

Edges of $BG_2(P_n)$ can be decomposed into $(n/2)+1$ fuzzy paths as follows:

$$P_{1} = v_0, v_1, v_2, v_3, \ldots, v_{n-1}, v_n$$

$$P_{2} = e_1, e_2, e_3, \ldots, e_{(n+1)/2}, e_{(n+1)/2}$$

$$P_{3} = e_{(n+1)/2}, e_{(n+1)/2}, e_{(n+1)/2}, e_{(n+1)/2}, e_{(n+1)/2}$$

$$\ldots$$

$$P_{n+2} = e_{(n-2)/2}, e_{(n+1)/2}, e_{(n+1)/2}, e_{(n+1)/2}, e_{(n+1)/2}, e_{(n+1)/2}, \ldots, e_{(n-1)}$$

$$P_{2n+1} = v_0, v_1, v_2, v_3, \ldots, v_{n-1}, v_n$$

$$e_{n-2}, \ldots, e_n.$$
In two paths \(P_1 \) and \(P_2 \), take \(e_{n_1/2} \) as a source vertex. If two vertices \(v_k \) or \(e_k \in P_1 \) and \(v_l \) or \(e_l \in P_2 \) such that fuzzy shortest path from source vertex \(e_{n_1/2} \) for \(v_k \) or \(e_k \) is through \(P_1 \) and fuzzy shortest path from source vertex \(e_{n_1/2} \) for \(v_l \) or \(e_l \) is through \(P_1 \), then \(d(e_{n_1/2}, v_k) = \bar{d}(e_{n_2/2}, e_l) \) or \(d(e_{n_1/2}, e_l) = \bar{d}(e_{n_2/2}, v_k) \) if and only if \(N(e_{n_1/2}, v_k) = \bar{N}(e_{n_2/2}, e_l) \) or \(N(e_{n_1/2}, e_l) = \bar{N}(e_{n_2/2}, v_k) \). This implies that, \(\beta(BG_2(P_1 \cup P_2)) \neq 1 \). Include \(e_{n+2} \) as another source vertex so that \(N(e_{n+2}, v_k) \neq N(e_{n+2}, e_l) \) or \(N(e_{n+2}, e_l) \neq N(e_{n+2}, v_k) \).

Continuing this process for all \((n/2)+1 \) paths in \(BG_2(P_n) \), we get \((n/2)+1 \) source vertices for \(BG_2(P_n) \). \(\hat{M} = \{e_{n+2}, e_{n+4}, \ldots, e_{n+2n} \} \).

Hence, \(\beta(BG_2(P_n)) \leq (n+2)/2 \).

Case ii: \(n \) is even

Edges of \(BG_2(P_n) \) can be decomposed into \((n+1)/2)+1 \) fuzzy paths as follows:

\[P_1: v_1 v_3 v_5 v_7 v_9 v_{11} v_{13} v_{15} v_{17} v_{19} v_{21} \]

\[P_2: e_1 e_3 e_5 e_7 e_9 e_{11} e_{13} e_{15} e_{17} \]

\[P_3: e_2 e_4 e_6 e_8 e_{10} e_{12} e_{14} e_{16} \]

\[\ldots \]

\[P_{(n+1)/2+1}: v_{n/2} v_{n/2-1} v_{n/2-2} v_{n/2-3} \ldots \ldots v_{n+1} e_{n+1} e_{n+3} \ldots \ldots e_{n+2n/2-2} e_{n+2n/2-1} e_{n+2n/2} \]

which has the same characterization as mentioned in the previous case.

Therefore, \(\hat{M} = \{e_{n+3/2}, e_{n+5/2}, e_{n+7/2}, \ldots, e_{n+2n} \} \).

Hence, \(\beta(BG_2(P_n)) \leq (n+3)/2 \).

Fuzzy Metric Dimension of \(BG_2(C_n) \):

Theorem 3.2 If \(G = BG_2(C_n) \), then \(\beta(BG_2(C_n)) \leq \frac{n+1}{2} \), when \(n \) is odd.

Proof: Let \(v_1, v_2, v_3, \ldots, v_n \) be the vertices of \(C_n \) and let \(v_1 v_2 = e_{12}, v_2 v_3 = e_{23}, \ldots, v_{n-1} v_n = e_{n-1n} \). \(V_1 V_n = \in \) be the edges of \(C_n \).

Case i: \(n \) is even

Edges of \(BG_2(C_n) \) can be decomposed into \(n/2+2 \) fuzzy paths as follows:

\[P_1: v_1 v_2 e_{23} e_{45} e_{67} e_{89} e_{11} e_{12} \ldots \ldots e_{n/2} v_{n/2} v_{n/2-1} v_{n/2-2} v_{n/2-3} \ldots \ldots e_{n/2-1} \]

\[P_2: v_2 v_3 e_{23} e_{45} e_{67} e_{89} e_{11} e_{12} \ldots \ldots e_{n/2-1} v_{n/2} v_{n/2-1} v_{n/2-2} \ldots \ldots e_{1} \]

\[P_3: v_3 v_4 e_{34} e_{56} e_{78} e_{91} e_{2} \ldots \ldots e_{n/2-2} v_{n/2-1} v_{n/2-2} v_{n/2-3} \ldots \ldots e_{2} \]

\[\ldots \]

\[P_{(n/2)+1}: v_{n/2} v_{n/2-1} v_{n/2-2} v_{n/2-3} \ldots \ldots v_{n+1} e_{n+1} e_{n+3} \ldots \ldots e_{n+2n/2-2} e_{n+2n/2-1} e_{n+2n/2} \]

which has the same characterization as mentioned in the previous case.

Therefore, \(\hat{M} = \{v_1, v_2, v_3, \ldots, v_{n/2}, v_{n/2+1}, v_{n/2+2} \} \).

Hence, \(\beta(BG_2(C_n)) \leq (n+3)/2 \).

Fuzzy Metric Dimension of \(BG_2(nK_2) \):

Theorem 3.3 If \(G = BG_2(nK_2) \) then \(\beta(BG_2(G)) \leq n \).

Proof: Let \(v_1, v_2, v_3, \ldots, v_{2n} \) be the vertices of \(nK_2 \) and let \(v_1 e_{12}, v_2 e_{23}, \ldots, v_{2n-1} e_{2n-12n-1} \) be the edges of \(nK_2 \). We denote \(e_1 = e_2 = e_3 = \ldots = e_{2n-1} = e_n \). Edges of \(BG_2(nK_2) \) can be decomposed into \(K_n \) and \(n \) triangles.

Case i: \(n \) is even
We know that $K_n (n \geq 4)$ is decomposable into two fuzzy paths as follows:

(i) $n/2$ Hamiltonian fuzzy paths of length $n - 1$ (or)

(ii) $n - 1$ fuzzy paths of length $n/2$.

Thus, Edges of $BG_{(2nK_2)}$ can be decomposed into n fuzzy paths as follows:

$P_1: v_{2i-1} v_{2i} e_2 c_2 e_2 c_2 e_{n-2} e_3 \ldots c_{(n+4)/2} e_{(n+4)/2} v_{2m-1}$
$P_2: v_{2i-1} v_{2i} e_2 c_2 e_2 e_2 e_{n-2} e_3 \ldots c_{(n+6)/2} e_{(n+6)/2} v_{2m-1}$
$P_3: v_{2i-1} v_{2i} e_3 c_2 e_2 c_2 e_2 c_2 e_{n-2} e_3 \ldots c_{(n+4)/2} e_{(n+4)/2} v_{2m-1}$
$P_4: v_{2i-1} v_{2i} e_3 c_2 e_2 e_3 e_2 e_2 c_3 e_3 \ldots c_{(n+10)/2} e_{(n+10)/2} v_{2m-1}$

$P_5: v_3 v_4$.

$P_{2n}^2: v_{n-1} v_n$.

$P_{2n+1}^2: v_1 v_2 v_3$.

$P_{2n+2}^3: v_3 v_4 v_5$.

$P_{2n+3}^3: v_5 v_6 v_7$.

$P_{2n}^n: v_{n-1} e_n v_n$.

In two paths P_1 and P_2, v_1 is fixed as a source vertex. If two vertices v_1 or $e_1 \in P_1$ and v_1 or $e_1 \in P_2$ such that fuzzy shortest path from v_1 for v_k or e_k is through P_2 and fuzzy shortest path from v_1 for v_k or e_k is through P_1, then $d (v_1, v_k) = d (v_1, v_k)$ or $d (v_1, v_k) = d (v_1, v_k)$ and $N(v_1, e_k) = N(v_1, e_k)$.

Include v_1 as another source vertex so that $N(v_1, v_k) = N(v_1, e_k)$ and $N(v_1, e_k) = N(v_1, v_k)$. This implies that, $\beta (BG_{(2nK_2)}) \neq 1$.

Include v_1 as another source vertex so that $N(v_1, v_k) = N(v_1, e_k)$ and $N(v_1, e_k) = N(v_1, v_k)$. Continuing this process for all n paths in $BG_{(2nK_2)}$, we get n source vertices for $BG_{(2nK_2)}$.

Therefore, $M = \{ v_1, v_3, \ldots , v_{2n-1}, e_1, e_3, \ldots , e_{2n-1} \}$. Hence, $\beta (BG_{(2nK_2)}) \leq n$.

Case ii: n is odd.

Edges of $BG_{(2n+1)}$ can be decomposed into n fuzzy paths of length three as follows:

$P_1: v_1 e_1 v_2$.

$P_2: v_2 e_2 v_3$.

$P_3: v_3 e_3 v_4$.

$P_{2n}^n: v_6 e_6 v_7$.

In two paths P_1 and P_2, e_1 is fixed as a source vertex. If two vertices v_1 or $e_1 \in P_1$ and v_1 or $e_1 \in P_2$ such that fuzzy shortest path from e_1 for v_k or e_k is through P_2 and fuzzy shortest path from e_1 for v_k or e_k is through P_1, then $d (e_1, v_k) = d (e_1, v_k)$ or $d (e_1, v_k) = d (e_1, v_k)$.

Include e_1 as another source vertex so that $N(e_1, v_k) = N(e_1, e_k)$ and $N(e_1, e_k) = N(e_1, v_k)$. This implies that, $\beta (BG_{(2n+1)}) \neq 1$.

Include e_1 as another source vertex so that $N(e_1, v_k) = N(e_1, e_k)$ and $N(e_1, e_k) = N(e_1, v_k)$. Continuing this process for all n paths in $BG_{(2n+1)}$, we get n source vertices for $BG_{(2n+1)}$.

Therefore, $M = \{ e_1, e_3, \ldots , e_{2n-1}, v_1 \}$. Hence, $\beta (BG_{(2n+1)}) \leq n$.

B. Fuzzy Metric dimension of fuzzy Boolean graph $BG_{(G)}$.

In this section, We determine the fuzzy Metric basis of fuzzy Boolean graph $BG_{(G)}$ for some standard fuzzy graphs G.

Fuzzy Metric Dimension of $BG_{(P_n)}$.

Theorem: 3.5 If $G = BG_{(P_n)} (n > 3)$, then $\beta (G) \leq ...$
Edges of \(BG_{i}(C_n)\) can be decomposed into \(\frac{n}{2} + 3\) fuzzy paths as follows:

- For even \(n\): \(n/2 + 3\) paths.
- For odd \(n\): \(n/2 + 5\) paths.

Proof: Let \(v_1, v_2, v_3, \ldots, v_n\) be the vertices of \(C_n\) and let \(v_1v_2 = e_{12}, v_2v_3 = e_{23}, \ldots, v_{n-1}v_n = e_{n-1,n}, v_1v_n = e_{1n}\) be the edges of \(C_n\).

Case i: \(n\) is even

Case ii: \(n\) is odd

Fuzzy Metric Dimension of \(BG_i(C_n)\).

Theorem: If \(G = BG_i(C_n)\), then \(\hat{\beta}(BG_i(C_n)) \leq \left\lfloor \frac{n+5}{2} \right\rfloor\) when \(n\) is odd.

\(\left\lfloor \frac{n+6}{2} \right\rfloor\), when \(n\) is even.

Proof: Let \(v_1, v_2, v_3, \ldots, v_n\) be the vertices of \(C_n\) and let \(v_1v_2 = e_{12}, v_2v_3 = e_{23}, \ldots, v_{n-1}v_n = e_{n-1,n}, v_1v_n = e_{1n}\) be the edges of \(C_n\).

Case i: \(n\) is even

Case ii: \(n\) is odd

International Journal of Engineering and Advanced Technology (IJEAET)
ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication

Retrieval Number: C6226029320/2020@BEJESP
DOI: 10.35940/ijear.C6226.029320
Fuzzy Metric Dimension of Fuzzy Hypercube Q_n and Fuzzy Boolean Graphs

Theorem 3.7 If $G = BG_3(nK_2)$ then $\tilde{\beta}(BG_3(G)) \leq n$.

Proof: Let $v_1, v_2, v_3, \ldots, v_{2n}$ be the vertices of nK_2 and let $v_1v_2 = e_{12}, v_3v_4 = e_{34}, \ldots, v_{2n-1}v_{2n} = e_{2n-1,2n}$ be the edges of nK_2. We denote $e_{12} = e_1, e_{34} = e_2, \ldots, e_{2n-1,2n} = e_n$.

Edges of $BG_3(nK_2)$ can be decomposed into K_n and n paths of length two.

Case i: n is even

We know that K_n is decomposable into two fuzzy paths as follows:

(i) $n/2$ Hamiltonian fuzzy paths of length $n - 1$.

(ii) $n - 1$ fuzzy paths of length $n/2$.

Thus, Edges of $BG_3(nK_2)$ can be decomposed into n fuzzy paths as follows:

$P_{1}: v_2, e_1, e_2, e_3, e_4, e_2, e_5, \ldots, e_{(n/4)}e_{(n/4)+2}v_{2m-1}$.

$P_{2}: v_2, e_1, e_2, e_3, v_5, e_6, e_7, \ldots, e_{(n/4)}e_{(n/4)+2}v_{2m-1}$.

$P_{3}: v_2, e_1, e_2, e_3, e_4, e_5, e_6, e_7, \ldots, e_{4m+2}e_{4m+4}v_{2m-1}$.

$P_{4}: v_2, e_1, e_2, e_3, e_4, e_5, e_6, e_7, \ldots, e_{(n/2)}e_{(n/2)+2}v_{2m-1}$.

In two paths P_{1} and P_{2}, of $BG_3(G)$, take e_1 as a source vertex. If the two vertices v_1 or $v_1 \in P_{1}$ and $v_1 \in v_1 \in P_{2}$ such that fuzzy shortest path from e_1 to v_1 or v_1 is through P_{2} and fuzzy shortest path from v_1 or v_1 is through P_{1}, then $d (v_1, v_1) = d (v_1, v_1)$ or $d (v_1, v_1) = d (v_1, v_1)$.

Continuing this process for all n paths in $BG_3(nK_2)$, we get n source vertices for $BG_3(nK_2)$. Hence, $\tilde{\beta}(BG_3(nK_2)) \leq n$.

Case ii: n is odd

We know that K_n is decomposable into n fuzzy paths of length $(n-1)/2$.

The fuzzy metric dimension of $BG_3(S_{1,n})$ is as follows:

$P_{1}: v_1, e_1, e_2, e_1, e_2, \ldots, e_{(n-1)/2}v_{(n-1)/2}$.

$P_{2}: v_2, e_1, e_2, e_1, e_2, \ldots, e_{(n-1)/2}v_{(n-1)/2}$.

Hence, $\tilde{\beta}(BG_3(S_{1,n})) \leq n$.

Fuzzy Metric Dimension of $BG_3(S_{1,n})$

Theorem 3.8 If $G = BG_3(S_{1,n})$ then $\tilde{\beta}(BG_3(G)) \leq n$.

Proof: Let $v_{1}, v_{2}, v_{3}, \ldots, v_{2n}$ be the vertices of $S_{1,n}$ and let $v_{1}v_{2} = e_{12}, v_{3}v_{4} = e_{34}, \ldots, v_{2n-1}v_{2n} = e_{2n-1,2n}$ be the edges of $S_{1,n}$, where v_{1} is the central vertex of $S_{1,n}$. Edges of $BG_3(S_{1,n})$ can be decomposed into subdivision graph of $S_{1,n}$.

Case i: n is even

Edges of $BG_3(S_{1,n})$ can be decomposed into $n/2$ paths of length $n/4$ as follows:

$P_{1}: v_1, e_1, e_2, e_1, e_2, \ldots, e_{(n/2)}v_{(n/2)}.$

$P_{2}: v_2, e_1, e_2, e_1, e_2, \ldots, e_{(n/2)}v_{(n/2)}.$

$P_{3}: v_3, e_1, e_2, e_1, e_2, \ldots, e_{(n/2)}v_{(n/2)}.$

$P_{4}: v_4, e_1, e_2, e_1, e_2, \ldots, e_{(n/2)}v_{(n/2)}.$

In two paths P_{1} and P_{2}, v_{1} is fixed as a source vertex. If two vertices v_1 or $v_1 \in P_{1}$ and $v_1 \in P_{2}$ such that fuzzy shortest path from e_1 to v_1 or e_1 is through P_{2} and fuzzy shortest path from v_1 or e_1 is through P_{1}, then $d (v_1, v_1) = d (v_1, v_1)$ or $d (v_1, v_1) = d (v_1, v_1)$.

Continuing this process for all $n/2$ paths in $BG_3(S_{1,n})$, we get $n/2$ source vertices for $BG_3(S_{1,n})$. Hence, $\tilde{\beta}(BG_3(S_{1,n})) \leq n/2$.

Case ii: n is odd

Edges of $BG_3(S_{1,n})$ can be decomposed into $n/2$ fuzzy paths of length four and one fuzzy path of length two as follows:

$P_{1}: v_1, e_1, e_2, e_1, e_2, \ldots, e_{(n/2)}v_{(n/2)}.$

$P_{2}: v_2, e_1, e_2, e_1, e_2, \ldots, e_{(n/2)}v_{(n/2)}.$

$P_{3}: v_3, e_1, e_2, e_1, e_2, \ldots, e_{(n/2)}v_{(n/2)}.$

$P_{4}: v_4, e_1, e_2, e_1, e_2, \ldots, e_{(n/2)}v_{(n/2)}.$

In two paths P_{1} and P_{2}, take e_1 as a source vertex. If two vertices v_1 or $e_1 \in P_{1}$ and $v_1 \in v_1 \in P_{2}$ such that fuzzy shortest path from e_1 to v_1 or e_1 is through P_{2} and fuzzy shortest path from e_1 to v_1 or e_1 is through P_{1}, then $d (v_1, v_1)$.
\[\bar{d} (e_1, e_2) \] or \[\bar{d} (e_1, e_3) = \bar{d} (e_2, v_i) \] if and only if \(\text{N}(e_1, v_k) = \text{N}(e_2, v_k) \) or \(\text{N}(e_1, e_2) = \text{N}(e_1, v_i) \). This implies that, \[\beta (BG_3(S_{1,n})) \neq 1. \]

Include \(e_1 \) as another source vertex so that \(\text{N}(e_2, \bar{N}) \neq \text{N}(e_1, e_2) \) or \(\text{N}(e_1, e_3) \neq \text{N}(e_1, v_i) \). \[\bar{d} (e_1, v_k) \neq \bar{d} (e_2, e_3) \] or \(\bar{d} (e_1, e_3) \neq \bar{d} (e_2, v_i) \).

Continuing this process for all \(n \) paths in \(BG_3(S_{1,n}) \), we get \(n \) source vertices for \(BG_3(S_{1,n}) \). \[M = \{ e_1, e_3, e_5, \ldots, e_{n-2}, e_n \}. \]

Hence, \[\beta (BG_3(S_{1,n})) \leq (n+1)/2. \]

IV CONCLUSION

We have determined the fuzzy metric dimension of fuzzy Hypercube \(Q_d \) and \(Q_n \), obtained some new bounds for fuzzy metric dimension of fuzzy Hypercube \(Q_n \).

We have calculated fuzzy metric dimension of fuzzy Boolean graph \(BG_3(G) \) of fuzzy path, fuzzy cycle, star fuzzy graph and \(nK_2 \). We have also determined the fuzzy metric dimension of fuzzy Boolean graph \(BG_3(G) \) of fuzzy path, fuzzy cycle, star fuzzy graph and \(nK_2 \).

ACKNOWLEDGMENT

First author would like to thank the University Grants Commission, New Delhi, India, for providing the financial support during her research work from the scheme of “MAULANA AZAD NATIONAL FELLOWSHIP”.

REFERENCES

AUTHORS PROFILE

M. Bhanumathi, was born in Nagercoil, Tamil Nadu, India in 1960. She received her B.Sc., M.Sc., and M.Phil., degrees in Mathematics from Madurai Kamaraj University in 1981, 1983 and 1985 respectively. She did her research under Dr.T.N.Janakiraman at National Institute of Technology, Trichy for her doctoral degree and received her Ph.D degree from Bharathidasan University in 2005. In 1987, she joined as Assistant Professor of Mathematics in M.V.M. Govt. Arts College for Women, Dindigul affiliated to Madurai Kamaraj University, India. From August 1989 to December 2017, she has been with the PG department of Mathematics in Government Arts College for Women (Autonomous), Padukkottai. She is currently Principal (Retd), Government Arts College for Women, Sivagangai, affiliated to Alagappa University, India. Her current research interests in Graph Theory include Domination in Graphs, Graph Operations, Distance in Graphs, Decomposition of Graphs, Metric dimension and Topological indices of graphs. She has published more than 95 research papers in national/international journals.

M. Thuseem Furjana, was born in Tiruvannamalai District, Tamil Nadu, India in 1990. She received her B.Sc and M.Sc degree in Mathematics from Bharathidasan University, Trichy in 2010 and 2012, respectively. She received M.Phil degree in Mathematics from Madras University, Chennai in 2013. She is pursuing research in the Department of Mathematics, Government Arts College for Women (Autonomous), Padukkottai, Tamilnadu, India. Her current research area is Graph Theory. She has published six research papers. She is a Fellow of MANF (Maulana Azad National Fellowship), University Grants Commission, New Delhi, India.