Mechanical Behavior & Analysis of Epoxy, Al₂O₃ Composites

K. Bharadwaja, S. S. Rao, T. Babu Rao

Abstract: In this paper, an intelligent report has been planned for to assess epoxy composite network Epoxy composite execution of Al₂O₃ particles remembered for epoxy composite resin. A ultrasonic blending method applied to accomplish homogenous dissemination of particles addicted to epoxy pitch. Various mechanical and Tribological tests, for example, bending (three(3) point) test, Charpy Impact test & hardness are perform to check mechanical properties & wear execution of Al₂O₃ Epoxy composites. These composites showed expanded bowing quality and effect quality because of the absorption of Al₂O₃ particles. In collection, presentation of Al₂O₃ particles into Epoxy gum grid at low qualities brought about noteworthy decrease of wear rate. Such type of impacts would be ascribed to the scattering of Al₂O₃ particles into epoxy framework & stacking. The impact of the Al₂O₃ molecule ejection with epoxy lattice tar is additionally portrayed regarding strengthening strategies.

Keywords: Epoxy composite; Al₂O₃ particles; Epoxy; Mechanical properties; Tribological execution.

I. INTRODUCTION

The Epoxy pitch is mainly fundamental thermosetting polymers that have been generally utilized while the framework in Epoxy + Al₂O₃ composites along with other basic materials because of its high quality, huge compound obstruction, and straightforwardness in preparing and in light of the fact that it is accessible since multi year. Separated of this, epoxy tars are one of a kind among every basic materials because of its high quality, huge compound obstruction, and straightforwardness in preparing, mechanical deck and Epoxy composites.

Since numerous years, Epoxy composites have become other materials that improve Epoxy composite material execution by recognizing innovative qualities and permitting interesting association among materials [3-11]. There are various observations that illustrate Epoxy composites demonstrate elevated mechanical & warm properties contrasted with conventional Epoxy+ Al₂O₃ composites [16].

II. MATERIALS USED

The hybrid Epoxy composite material used in the current research includes a matrix material Lapox C-51, a low viscosity liquid epoxy resin (equivalent weight = 182-192 g/eq, viscosity at 25°C= 450 - 650 m Pas) along with Lapox K-6, a room temperature curing amine hardener (density at 25°C = 1.04 Kg/l) supplied by Atul Ltd, Gujarat. The reinforcing material Al₂O₃ particle (190 µm) procured from Fisher Scientific, Mumbai.
III. SPECIMEN PREPARATION

The calculated weight amount of Epoxy+ Al₂O₃ particles was mixed resin through a mechanical stirrer for 10 min to decrease viscosity of resin after that This compound was then mixed Homogenizer (Micra D-9, speed range of 11 000–39 000 rpm) used for 14 min in order to attain a homogenous dispersion shown in Fig 1. A curing agent was added to the mixes at surrounding temperature & combined for 5 minutes by means of the mechanical stirrer. So as to acquire ordinary Epoxy composite examples for mechanical testing, the last mix was filled the shut shape, trailed by the relieving procedure around 24 hours with proper releaser applied before filling mould.

Epoxy composite Characterization

Flexural Test

Three-point bending test of the Epoxy+ Al₂O₃ composite samples prepared ASTM D790 using a Deepak Samarth universal testing machine at a deformation rate of 5 m/min at near to room temperature in regulate to calculate flexural properties.

Charpy Impact Test

Notched Impact test conducted using Impact Tester machine, model FIT 300 (EN) according to ASTM D256 standard. The entire composite sample dimensions are 10x10x55 mm

Hardness

The samples for hardness testing were machined from the fabricated Epoxy composites with the dimensions of 15x25x10mm and polished them to 1µm, by using Barcol method.

Scanning electron microscopy(SEM)

In categorize to observe the morphology of fracture surfaces in Flexural Bending test, Charpy impact test, & SEM utilized with the function of obtaining in sequence concerning the consequence of particles on the resultant reinforcing.

IV. TEST RESULTS

Flexural Test

Flexural Bending test utilized for assessing flexural properties of epoxy composites loaded up with Al₂O₃ particles. after number of studies which agree with the positive impact of in adaptable particles on the size of macrometer during stress conduct of framework Epoxy composite. In including, it is celebrated that flexural quality of Epoxy+ Al₂O₃ composites is strengthened with fall of micrometer molecule size because of expanded filler content [28]. This gives far over the ground flexural quality. Fig. 1 shows flexural quality of Epoxy composites loaded up with Al₂O₃ particles as far as Al₂O₃ particles content. As per Table 1 & Fig. 1, the including of 5% volume Al₂O₃ into epoxy gum brought about a 10% overhauling in flexural quality contrasted and slick epoxy. Expanding the measure of Al₂O₃ to 7% volume development improved flexural quality upto 30%. This expanded flexural quality can be licensed to the nature of dissemination and stacking of particles.

Flexural strength results of Al₂O₃... Wt % (Table1)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% of Al₂O₃</th>
<th>Flexural strength (MPa)</th>
<th>Impact strength (KJ/m²)</th>
<th>Hardness strength (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>45</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>49</td>
<td>1.8</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>54</td>
<td>2.1</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>55</td>
<td>2.3</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>59</td>
<td>2.9</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>61</td>
<td>2.6</td>
<td>85</td>
</tr>
</tbody>
</table>

Impact test

The Charpy impact test is one of the most appropriate impact tests that assess the performance of a material issue to shock loading with bending, tension and torsion. Charpy tests are extensively applied in industries due to the simplicity of sample preparation and the opportunity to generate comparative data very rapidly [32]. Notched samples are prepared. The specimen contains a notch, then the calculated impact strength is pretentious by only fracture propagation.
In other words, notches act as stress concentrators. As well, if the original addition procedure not efficient, a comparable trend could be induced by constituent part agglomerates, which continue as stress concentrators within the matrix. If the introduced particles act as burly stress concentrators, the impact force of the composite (epoxy+ Al2O3) is predictable to decline significantly as more particles are introduced. It be supposed to be noted at this point that the utilize of notched specimens in this study emphasizes the measurement of the power required to promulgate a crack through the material. shows Fig. 2. impact strength of (epoxy + Al2O3) composites as a role of Al2O3 particle content.

Hardness test

Fig. 3 shows the variations in the hardness of Epoxy with Al2O3(composite) filler content. As practical, accumulation of the Al2O3 particles improved the hardness, which corresponds to the high hardness & additional identical diffusion of Al2O3 filler. Elevated hardness is exhibited by the 6% of Al2O3 particles overflowing (Epoxy+ Al2O3) composites, while 7% Al2O3 particles. Epoxy composite shows decrease in hardness. For the majority cases, increasing filler content increases the rigidity of the Epoxy + Al2O3 composite. In this case of high filler ratio, a small drop in hardness value is seen. These observable fact can be delineate by the weak point in the bond the epoxy + Al2O3 fillers. Lam et al. found that ornamental the stuffing ratio resulted in attractive collect in the Al2O3 particles crammed Epoxy composite & a decrease in the hardness value of the Epoxy + Al2O3 composite.

V. CONCLUSION

In this paper evaluated Mechanical & Tribological performance of composite(Epoxy+Al2O3),so as to attain high superiority dispersion of Epoxy+ Al2O3 composite, ultrasonic mixing utilized to get the Results. Matrix properties have been pretentious by beginning of particles. Flexural Bending strength, of composite augmented due to mixture of 1% volume Al2O3 particles with epoxy matrix. These improvements continued up to 7% volume added into epoxy matrix Impact strength of composite improved due to blend of 1% volume Al2O3 particles with epoxy matrix. These improvements continued up to 5% volume, and decreased in 6 & 7% volume, added into epoxy matrix hardness of composite improved due to blend of 1% volume Al2O3 particles with epoxy matrix. These improvements continued up to 6% volume, and decreased in 7% volume, added into Epoxy, Al2O3 matrix. [40].since possibility of agglomeration particles increases in these circumstances, in conclusion, high mechanical properties of Al2O3, epoxy composite, with superior wear properties, permit the substance to moderately or entirely substitute fibers in predictable fiber-reinforced composites.

REFERENCES

Mechanical Behavior & Analysis of Epoxy, Al₂O₃ Composites

AUTHORS PROFILE

Mr. K. Bharadwaja, Assistant professor in Mechanical Engineering Department, Malla Reddy Engineering College(Autonomous), Maisammaguda, Pursuing Ph.d from KL University Vijayawada, AP

Dr. S S RAO, Professor in Mechanical Engineering Department, KL University Vijayawada, AP

Dr. Thella Babu Rao, Assistant professor in Mechanical Engineering Department, NIT, AP.