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Abstract: With the development of high-speed communication 
networks, the so-called property of self-similarity of flows has an 
increasing impact on the quality of service. From a practical point 
of view, this can be explained by the high variability of traffic 
intensity and, as a consequence, the high receipt of packets to the 
network node at a high data rate, which leads, due to the limitation 
of the buffer, to packet losses. For a long time, it was believed that 
the traffic of the local network is described by the classical Poisson 
distribution. Telephone networks were originally built on the 
principle of channel switching, and computer networks are 
usually based on the principle of packet switching, but the 
calculation methods have remained virtually the same. Packets at 
high speed of their movement on a network arrive on a node not 
separately, and the whole pack. Traffic in such networks has 
ripples, which increases the likelihood of congestion in the 
network nodes, which lead to buffer overflows and cause losses 
and / or delays.  Pulsations lead to differences in the speed of 
information flows, in which the ratio of the maximum value to the 
minimum speed is tens of times. At the same time, it turned out 
that in multiservice networks, the number of events in a given time 
interval depends on previous, very distant events. This means that 
at large scales of a multiservice network, traffic has the property of 
self-similarity, i.e. it looks qualitatively the same at any sufficiently 
large scales of the time axis. 

Keywords: Informatization, traffic parameters, communication 
networks, packet-switched networks, third-video in real time.  

I. INTRODUCTION 

Self-similar traffic has a special structure that persists with 

multiple scaling, i.e. there are some outliers in the 
implementation at a relatively small average traffic level. 
This phenomenon degrades performance when self-similar 
traffic passes through network nodes [8]. Self-similar models 
can exhibit the property of long-term dependence, which 
means the manifestation of dependence between events at 
sufficiently large intervals [3]. An informally self-similar 
process is defined as a random process whose statistical 
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characteristics exhibit scaling properties. Unlike Poisson 
processes, self-similar ones are characterized by the presence 
of an aftereffect: the probability of the next (next) event 
depends not only on time, but also on previous events 
(prehistory). This means that the number of current events 
may depend on the number of previous events at distant 
intervals [10].   

There are threads in which the probability of the next event 
occurring depends on the occurrence of events in previous 
time intervals. A typical example of such threads are threads 
with limited aftereffect [6]. They are given a finite set of 
distribution functions for the adjacent intervals TK between 
the arrival of k events [2]. However, such models take into 
account only the average values of the characteristics or their 
confidence limits. Such models are typically used to calculate 
rough estimates of the required network bandwidth. The 
same models are useful in cases where accurate and reliable 
values of the initial values of traffic parameters are not 
available for some reason [1].  

II.  LITERATURE REVIEW 

However, the recent complication of the nature of subscriber 
traffic leads to the fact that not taking into account random 
fluctuations can lead to service interruptions even for large 
nodes, so we consider various mathematical models of 
subscriber traffic, using different means of its description. 
The desire of the user to receive at the same time the services 
of traditional telephony and data transmission determine the 
vector of development of communication networks [7]. One 
of the important statistical properties of the load created by 
modern applications is the presence of a dependence between 
its individual parts, which does not disappear when the time 
scale changes in the direction of enlargement, as it happens 
with traditional random processes used to describe the load in 
the theory of teletraffic. For example, for a Poisson process, 
the corresponding correlation is always zero, and for a 
Markov process with a finite number of States, it 
exponentially decreases to zero [4]. Integration in 
packet-switched networks of traffic of different nature, as 
well as the features of data transmission technologies used to 
build communication networks and increased activity of 
network users, are some of the reasons for the manifestation 
of the self-similar nature of network traffic or, therefore, its 
fractal properties [9]. The analysis of modern technologies 
and information transmission networks shows that it is 
necessary to consider the vector of subscriber load, consisting 
of several components, each of which should reflect the 
traffic properties of some groups of subscribers with the same 
integral characteristics [5]. 
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 Since each of them describes traffic of fundamentally 
different origin: for example,  
one – voice traffic, the second-data traffic, the third-video in 
real time, etc., we can consider these components statistically 
independent. 

journal. There are two email address. It is compulsory to 
send paper in both email address. 

III. MATERIALS AND METHODS 

In this regard the traffic served X should be considered as the 
sum of several components: 

 
where Xi is some standard process describing the I-th 
component of the traffic, and the processes Xi are statistically 
independent; Zt

(i) is a fractal Brownian motion with the 
parameter value Hearst Xi.  
 Consequently, incoming traffic consists of a mixture of 
several processes with different values of the Hurst parameter 
and is of a complex nature and difficult to investigate its 
properties. Therefore, the most important is to find out how 
much its properties depend on the values of the Hurst 
parameter of its components. With the growth of the Hurst 
parameter, such statistical properties of the process as 
predictability, range of values, etc. only deteriorate. Accurate 
determination of the values of the Hurst exponent is difficult 
in the case when there is only one component. Therefore, it is 
impossible to determine by statistical means all the 
parameters characterizing the mixture, especially if the 
intensities of the individual components are relatively small. 
Since the main parameter characterizing the quality of 
network service is the probability of packet loss and the task 
of determining the sensitivity of this parameter from the 
values of the Hurst parameter is important. This means that 
all traffic components must be considered when designing 
network devices; because there may be congestion in the 
network, which will occur much more often than the 
calculated value obtained during the design and the device 
will not be able to adequately reflect the real flow of events, 
as it reveals a long-term dependence (the number of events in 
a given time interval depends on the number of events 
received in remote time intervals). The way to measure this 
dependence for random processes is to determine the 
correlation function.   

Self-similar traffic has a special structure that persists with 
multiple scaling, that is, there is a certain amount of 
emissions in the implementation at a relatively small average 
traffic level. 

IV. RESULTS AND DISCUSSIONS 

Self-similar processes can be detected by several equivalent 
features: R(k)=k(2H-2) they have a hyperbolically decaying 
correlation function of the form. Therefore, the correlation 
function is not summable and the series formed by the 
successive values of the correlation function diverges 

. This infinite sum another definition of 
long-term dependence (DVZ), so all self-similar processes 
are long-term dependent. The consequences of this are 
significant, as the cumulative effect over a wide range of 
delays can be significantly different from that observed in a 
short-term dependency (CVR) process (e.g. Poisson). The 

analysis of teletraffic is based on KVZ for which DVZ can 
cause serious consequences. Because DVZ is the cause of 
long ripples that exceed the average level of traffic and this 
can lead to buffer overflow and cause losses, delays; - 
dispersion of the sample average fades slower than the 
inverse of the sample size. If we introduce into consideration 
a new temporal sequence {Xi

(m); i=1,2,…} obtained by 
averaging the original sequence {Xi; i=1,2,…} for disjoint 
sequential blocks of size m, then self-similar processes are 
characterized by a slower decrease in dispersion according to 

the law , when m→∞, while for the theory of 

teletraffic  that is, decreases 
inversely proportional to the sample size. This suggests that 
the statistical characteristics of the sample (mean and 
variance) will converge especially at H to 1. This is expressed 
in all measures of self-similar processes;  
- when considering a self-similar process in the frequency 
domain, the manifestation of DVZ leads to a power nature of 
the spectral density near zero. And processes of KVZ are 
characterized by the spectral density having positive and final 
value at w=0.  

Self-similar processes are expressed in slow decrease of 
dispersion, long-term dependence (manifestation of 
dependence between events through rather big intervals of 
time) and fluctuation character of a power spectrum of such 
processes. Self-similar processes in the literature are also 
often called self-similar.  

The easiest way to characterize the long-term dependence 
of one parameter-the Hurst index N. to assess this parameter, 
there are many methods.   

A value of H=0.5 indicates the absence of self-similarity, 
and large values of H (close to 1) confirm the presence of 
long-term dependence.   

Among the models designed to simulate fractal traffic, the 
following can be distinguished [27]:  
- models based on "dynamic Markov modeling". These 
models are finite-state automata represented by state 
diagrams. The output of the model is a set of probabilities of 
the appearance of symbols;  
- neural network models that allow to solve the problem of 
approximation of several variables in the sample by 
immersing the time series in a multidimensional space;  
- ON/OFF models. In these models, traffic is seen as a 
combination of sources that generate it. In so-called 
Interperiods, they can generate packets of information. The 
ON period is followed by an OFF period when the source 
does not generate packets. The size of the ON-and 
off-Periods is a random variable that must have finite 
expectation and infinite variance;  
- multifractal models reproduce traffic aggregated from 
multiple sources. Multifractality of traffic manifests itself in 
changing the statistical properties of traffic implementation 
when the aggregation scale changes;   
- fractal Brownian motion. This model is based on a random 
process starting at the origin with independent infinitesimal 
Gaussian increments. To generate fractal Brownian motion 
random midpoint displacement algorithms or sequential 
random addition algorithms are used;  
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- fractal Gaussian noise is a stochastic process with certain 
parameters and an autocorrelation function of a given kind. 
This model has an additional Hurst parameter that quantifies 
the degree of fractal scaling.   

The results of the implementation of these models make it 
possible to get a reliable idea about the behavior of traffic in 
the network, which is necessary for the design and 
management of telecommunications networks.  

An informally self-similar (fractal) process can be defined 
as a random one whose statistical characteristics exhibit 
scaling properties. The self-similar process does not 
significantly change the view when viewed at different scales 
on the time scale. In particular, unlike processes that do not 
have fractal properties, there is no smoothing of the process 
when averaging on the time scale – the process retains a 
tendency to bursts. 

Let {Xk; k=0,1,2,…} – stationary random process.  
Given the stationarity and the assumption of the existence 
and finiteness of the first two moments, we introduce the 
notation:  

  – average, or expectation;  

  – dispersion;  

 – correlation function;  

– correlation coefficient.  

Time-scale averaging refers to the transition to , 
because   

 
where X(m) is the highest possible resolution for the process. 
Subsequent evolutions of the X(m) is a less detailed copy of 
process Xi. If the statistical properties (mean, variance) are 
preserved during averaging, then the process is self-similar.   
In network traffic modeling, the value Xk is interpreted as the 
number of packets that entered the channel or network during 
the k-th time interval. The initial process is already averaged. 
 A continuous stochastic process X(t) considered to be 
statistically self-similar with Hurst parameter 

, if for any positive number a, the 

process X(t) and  will have identical distribution, 
that is, to have the same statistical properties.  
In practice, usually there are not strictly self-similar, but 
asymptotically self-similar processes.   
The process X is strictly self-similar in wide sense (SSS) with 

Hirst coefficient  if the condition is satisfied 

 
The parameter H is an indicator of the degree of 
self-similarity of the process, and also indicates the presence 
of such properties as persistence/variability and long-term 
memory. For a Markov process (memoryless property) the 
Hurst coefficient is equal to 0.5. The process is completely 
random, respectively, the simplest (Poisson) flow is also 
called " pure randomness flow of the first kind.  

At [0; 0.5], the process is characterized by variability: high 
values of the process follow low values and Vice versa. That 
is, the probability that at k+1 step the process will deviate 
from the average in the opposite direction (relative to the 

deviation at k step) is as high as the parameter H is close to 0.  
In the case of h [0,5; 1] the process is persistent or with 
long-term memory: if for some time in the past there was an 
increase in the parameters of the process, then in the future, 
on average, their growth will occur. In other words, the 
probability that in step k+1 the process will deviate from the 
average in the same direction as in step k is as high as the 
parameter H is close to 1.   

In order to confirm the existence of a self-similarity 
property for different data streams of a multiservice network, 
it is necessary to measure some characteristics of different 
types of network traffic. This requires statistics on streams 
such as audio, video, and data traffic.   

That is, a CSSC process does not change its correlation 
coefficient after averaging over blocks of length m. Or X a 
process is a CSSC if the aggregated process X m  is 
indistinguishable from the original process X, at least with 
respect to second-order statistical characteristics. 

The property of asymptotically self-similar processes in 
the broad sense (ACCS) is that form tending to infinity, the 
process converges to the ACCS process 

 
There are observations that for both classes of self-similar 

processes the variance of  decreases much more 

slowly than by  comparison with stochastic 
processes where the variance decreases proportional to and 
approximates 0 at . 
The most accurate property of self-similar processes is that 
the autocorrelation function does not degenerate at , 

unlike stochastic processes where at R  at 
.  

Example of a fractal-the Koch curve belongs to the class of 
deterministic fractals, i.e. an object is directly composed of 
its small copies. In the theory of teletraffics, a class of 
random (stochastic) fractals is used to describe the behavior 
of the load value in packet-switched communication 
networks. In this case, the property of self-similarity (scale 
invariance) is observed only "on average", i.e. similar are not 
the signal samples themselves, but its correlation function, or 
PRV at different time scales.  
Self-similar processes have a hyperbolically damped 
correlation coefficient of the form 

 
or for asymptotically self-similar processes, correlation 
function  

 
where L(t) is a slowly changing function at infinity (i.e. 

). 
Therefore, the correlation function is non-cumulative-the 
series formed by successive values of the correlation function 
diverges. This property characterizes almost all self-similar 
processes and distinguishes them from processes without 
long-term dependence, 
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 in which the correlation function decreases according to the 
exponential law and is summable.  
Long-term dependence is the cause of pronounced pulsations 
of the process, but allows us to talk about some predictability 
in small time limits. From the point of view of queue theory, 
an important consequence of flow correlation is the 
unacceptability of queue parameter estimates based on the 
assumption of the same and independent distribution of 
intervals in the incoming stream.  
Self-similar processes have a slowly decreasing dispersion. 
When the process is averaged, the dispersion of the sample 
average fades more slowly than the inverse of the sample 
size, according to the law: 

 
While for traditional stationary random processes 

 
That is, it decreases inversely to the sample size.   
The property of slowly decreasing variance suggests the 
possibility of significant, not smoothed by averaging, 
"outliers" in a random process, and associates self-similarity 
with such a concept as distributions with weighty tails. An 
important corollary of the property of slowly decaying 
variance is that in the case of classical statistical tests (e.g. 
calculation of confidence intervals), the generally accepted 
standard deviation measure σ is erroneous.   
Associated with this property is the "uncharacteristic" 
behavior of the dispersion index, or scatter index, for process 
samples (IDC), also called the Fano factor. IDC is defined as 
the ratio of the variance of the number of events in a given 
time interval T to the expectation of this value: 

 
where N(T) is the number of events of the investigated flow 
occurring in the interval (window) T.  
For self-similar processes, the logarithm of the scatter index 
F (T) increases linearly: 

 
Self-similar processes have distributions with heavy tails. A 
random variable Z has a distribution with a heavy tail (RVX) 
if the probability P[Z>x] ~ CX at x→∞, i.e. the tail of the 
distribution attenuates according to the power law. An 
example of a distribution with a weighty tail is the Pareto 
distribution. At 0<α<2, Z has infinite variance, and at 0<α<1, 
the mean is also infinite.   

The most significant feature of a random variable with a 
heavy-tail distribution is its extreme variability. With a 
probability that is not negligible, a number of "very large" 
values may be present in the sample.   

Such distributions significantly reduce the accuracy of 
statistical estimates; the finite sample size leads to an 
underestimation of the mean and variance. The presence of 
RVC in phenomena external to the processes under 
consideration is one of the reasons for the emergence of 
self-similarity in the corresponding stochastic models. Often, 
when considering self-similar processes, we talk about a 
complex of interrelated concepts: self-similarity, scaling, 
long-term dependence, RVC and power laws of statistical 
characteristics. This set of properties distinguishes processes 
called self-similar from classical random processes, such as 

Poisson.   
The simplest self-similar objects are fractals. According to 

the definition given by the Belgian scientist Benoit 
Mandelbrot: "a fractal is a structure consisting of parts that 
are in some sense similar to the whole." But from a 
mathematical point of view, a fractal is, first of all, a set of 
fractional dimension. Therefore, self-similar processes are 
often called fractal.   

There are several approaches in the formation of a 
self-similar flow. The best known is the method originally 
proposed by Mandelbrot.   

This method is based on the superposition of several 
(strictly alternating) independent and having the same 
distribution OF on/OFF sources, the intervals between the 
ON and OFF periods of which have the Noah effect. By 
strictly alternating ON/OFF sources we mean a model where 
ON and OFF periods are strictly alternating, the durations OF 
on periods are independent and have the same distribution, 
the durations of OFF periods are also independent and have 
the same distribution, and the sequences of durations of ON 
and OFF periods are independent of each other.   

In this case, the duration of the ON and OFF periods may 
have different distributions.   

The Noah effect in the distribution of on/OFF period 
durations is a major point in self-similar traffic modeling as 
opposed to models where standard exponential or geometric 
distributions are used. The Noah effect is synonymous with 
infinite dispersion syndrome, which has emerged from 
empirical observations that many natural phenomena can be 
described by an infinite dispersion distribution.   

Mathematically, a Pareto distribution or log-normal 
distribution, also often called heavy-tailed distributions, can 
be used to achieve the Noah effect.   

A random variable is considered to have a distribution with 
a heavy tail (RTX or Heavy Tailed) if: 

 
 That is, the tail of the distribution attenuates according to 
the power law, in contrast to, for example, the Gaussian 
distribution with exponential tail decrease. The most popular 
is the Pareto distribution (figure 1).   
 

 
 

Fig. 1. Example of a heavy-tailed distribution 
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It is believed that network traffic in many cases is best 
described by heavy-tailed distribution. The Pareto 
distribution has a distribution function:   

 
 where α is the form parameter characterizing whether the 
distribution will have a finite or infinite mean and variance; 

 – is the lower bound parameter (the minimum value of 
the random variable x).   
The Pareto distribution density is given by the function: 

 

 
The parameter α defines the mean and variance of x as 

follows: - for α ≤ 1, the distribution has an infinite mean;   
- for 1 ≤ α ≤ 2, the distribution has a finite mean and infinite 

variance;   
- for α ≤ 2, the distribution has infinite variance.  
There is also a relation between parameter α and Hurst 

parameter H: 

 
The classical Pareto distribution is used in modeling many 
objects of the considered process, such as the size of disk 
files, WEB pages, data ripples, etc., the distinctive feature of 
which is the presence of the so-called "heavy tail" of the 
distribution curve (HT, heavy tail of distribution). 
Numerous studies of processes in the Internet have shown 
that statistical characteristics of traffic have the property of 
time scale invariance (self-similarity).   
The simplest self-similar objects are fractals. According to 
Mandelbrot's definition, " a fractal is a structure made up of 
parts that are in some sense similar to the whole." An 
informally self-similar process is defined as a random 
process whose statistical characteristics exhibit scaling 
properties.   
Strictly self-similar in a broad sense, the process (SSSP) is 
characterized by invariance of ACF when the level of 
aggregation changes under the condition of slowly 
decreasing dependence (MUZ).   

Unlike Poisson processes, self-similar ones are 
characterized by the presence of an aftereffect: the 
probability of the next (next) event depends not only on time, 
but also on previous events (prehistory). This means that the 
number of current events may depend on the number of 
previous events at distant intervals. Therefore, one of the 
main properties of self-similar process (self-similar) is 
MUSE (long range dependence). Therefore, self-similar 
processes are often called fractal. This is due to the processes 
of processing network packets, different amounts of data, 
with the emergence of many new applications, etc. It was 
noticed that not always the flow of packets in the network can 
be simulated using the Poisson process. Self-similar process 
is often explosive (burst) in nature, which is expressed in the 
possibility of emissions during a relatively low rate of arrival 
of events.  

To represent the property of self-similar flows, models 
with the following distributions are proposed: log-normal, 
Weibull (W), Pareto (P). In mathematical modeling, various 
models of distributions are used, among them mainly the 
Pareto distribution, which has the following form: 

 
Where  is the form parameter; k is the parameter that 
determines the lower bound for a random variable.  
The parameter  is related to the Hurst exponent H by the 
expression: 

 
To study and compare the dependencies of the average 
waiting time in the packet queue on the load, the simulation 
of the receipt of packets with the distribution of the duration 
of the intervals between packets according to the Pareto law 
in the object-oriented program GPSS World was carried out. 
In this model, the generate block is the source of the 
Pareto-distributed message flow. Generate (Pareto (1, k, a)) – 
the parameters of the Pareto law procedure have the 
following meaning: the first parameter - the number of the 
built-in generator is used as an argument for the formation of 
random variables with a given distribution law and the other 
two parameters directly specify the parameters of the 
probability distribution. With respect to traffic, 
self-similarity is expressed in the immutability of behavior 
when the time scales of observation change and the 
preservation of the tendency to spikes when averaging on the 
time scale.  
Figure 2 shows the dependence of the average waiting time in 
the queue on the loading of transactions (packets) distributed 
according to the Pareto law. 

 
Fig. 2. Dependence of average waiting time on loading 

 
Figure 2 shows that the average waiting time in the queue 
starts to increase when the load is above 50%, and when the 
queue is above 90%, the queue increases dramatically.  
Figure 3 shows a comparison of the dependence of the 
average waiting time in the queue on the loading of 
transactions (packets) distributed exponentially and Pareto's 
law. 

 
Fig. 3. Dependence of the waiting time in the queue from 

the load factor of the system 
The main property of the Poisson flow, which determines its 
wide application in modeling, is additivity: the resulting flow 
of the sum of Poisson flows is also Poisson with total 
intensity.  
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In modeling, a Poisson flow can be obtained by multiplexing 
a set of ON/OFF sources called Markov processes it has Long 
been believed that the nature of network traffic corresponds 
to a Poisson process. This meant that the input device 
receives a Poisson flow of applications, that is, is the 
simplest-a uniform stationary flow without aftereffects. 

Table-I. Output at p=1.6 and H=0.7 

loa
d  

Ave. 
cont  

Ave.t
ime  

Ave. 
(-0)  

loa
d  

Ave. 
cont  

Ave. 
time  

Ave. 
(-0)  

0,7  0,27
3  

0,272  1,512  0,9  13,30
6  

13,22
3  

16,285  

0,8  1,86
6  

1,854  3,883  0,9
5  

54,02  53,68
1  

57,372  

Therefore, until recently, the theoretical basis for the design 
of information distribution systems was the theory of 
Queuing. It adequately describes the processes occurring in 
circuit switching networks. The model of the call flow (data) 
in this theory is the simplest flow (stationary ordinary flow 
without aftereffect).  
The development of high technology has led to a wide spread 
of networks with packet data, which gradually began to 
replace the system with circuit switching, but, as before, they 
were designed on the basis of the General provisions of the 
theory of teletraffic.  
Flow as a random process is characterized by its statistical 
properties. The most commonly used are: probability density 
of data receipt for the period, probability density of intervals 
between data receipt and autocorrelation function. 

V. CONCLUSION 

Based on the study of simulation models revealed that the 
average waiting time of a packet in the queue grows faster 
with self-similar traffic than with the simplest. It is necessary 
to take into account the properties of self-similarity in the 
design and development of network devices. Network device 
level 3, calculated by mathematical models in accordance 
with the classical theory of teletraffic reduce the overall 
quality of service, while the main criteria for the quality of 
service QoS such as: packet transmission delay and packet 
loss will have inflated values. 
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