Abstract: Here we consider the special type of labeling as lucky edge labeling for Regular graphs and corona graphs.

Keywords: Corona graph, Lucky edge labeling, Regular graph.

I. INTRODUCTION

A. Let G be a graph as follows,
(i) G is non-empty (ii) G is finite
(iii) edges and η(G) is maximum labels has been given in the graph.
If G is said to be regular graphs, each vertex have same neighbors.
Corona graph is obtained from two graphs, G of order P and H, taking one copy of G and P copies of H and joining by an edge the i{sup}th vertex of G to every vertex in the i{sup}th copy of H.

II. MAIN RESULTS.

A. Theorem 3.1

For every n ≥ 4 where n is an even number, there exists a 3-regular \(\left(\frac{2n}{3} \right) \) graph which holds Lucky edge labeling. [4]

Proof:

To prove that for 3-regular graph which admits Lucky edge labeling with lucky number is 4i + 3 where i = 1, 2, 3… respectively.
Define the vertex labeling, for all n ≥ 4 (where n is an even number)

\[f(v_i) = i \text{ for all } i \] \hspace{1cm} (1)
\[f : E \rightarrow \left\{ 1, 2, 3, \ldots, \frac{n}{2} \right\} \]

\[f(v_i, v_{i+j}) = 2j - 1, \text{ when } \left\{ \begin{array}{l} i = 1, 2, 3, \ldots, \frac{n}{2} \end{array} \right\} \] \hspace{1cm} (2)

\[f(v_{i+k}, v_{i+k}) = n - k + 1, \text{ when } k = 1, 2, 3, \ldots \] \hspace{1cm} (3)

\[f(v_{i+j}, v_{i+j+k}) = 6 + i + j \text{ when } n = 4, \text{ for } i = 0, j = 1, 2 \] \hspace{1cm} (4)

Illustration: n = 4

Hence, a 3- regular (4,6) graph which admits Lucky edge labeling and its lucky number is 7.

Illustration: n = 10

Hence, a 3- regular (4,6) graph which admits Lucky edge labeling and its lucky number is 7.
B. **Theorem 3.2**

For every \(n \geq 5 \) there exists a 4-regular \((n, 2n)\) graph which admits Lucky edge labeling. [4].

Proof:

To prove that for 4-regular \((n, 2n)\) graph [4] its lucky number is \(2n - 1\).

Define the vertex labeling for all \(n \geq 5 \).

Let \(f: E \rightarrow \{1, 2, 3, \ldots, 2n\} \) such that

\[
\begin{align*}
 f(v_i, v_{i+1}) &= n + 1 \\
 f(v_i, v_{i+1}) &= 2i + 1, \text{where } i = 1, 2, 3, \ldots \\
 f(v_i, v_{i+1}) &= n + 2 \\
 f(v_i, v_{i+1}) &= 2i + 2, \text{where } i = 1, 2, 3, \ldots
\end{align*}
\]

(1) (2) (3) (4) (5)

Illustration: When \(n = 5 \)

Hence, a 4- regular \((5, 10)\) graph which admits Lucky edge labeling and its lucky number is 9.

Illustration: When \(n = 7 \)

Hence, a 4- regular \((7, 14)\) graph which admits Lucky edge labeling and its lucky number is 13.

C. **Theorem 3.3**

The corona graph \(P_n \circ K_2\) always contains a lucky edge labeling.

Proof:

In \(G = P_n \circ K_2 \), construction of vertex set, and edge as follows.

Let \(v(G) = v(P_n) \cup v(K_2) \) and

\[
\begin{align*}
 v(P_n) &= \{u_1, u_2, \ldots, u_{n-1}, u_n\} \\
 v(K_2) &= \{v_1, v_2, \ldots, v_{2n-1}, v_{2n}\}
\end{align*}
\]

\[
E(G) = \{u_i, u_{i+1} : 1 \leq i \leq n - 1\} \cup \{v_{2i-1}, v_{2i} : 1 \leq i \leq n\} \cup \{u_i, v_i : 1 \leq i \leq n\}
\]

be the vertex set and edge set of \(G \) respectively. [6]

Now \(|v(G)| = 3n \) and \(|E(G)| = 4n - 1 \).

We will classify the edges of corona of \(P_n \circ K_2 \) in three cases.

i) Path edges

ii) \(K_2 \) edges

iii) Edges joining from \(K_2 \) with the path.

Vertex set defined as,

\[
\begin{align*}
 f(u_i) &= 1 \\
 f(u_{i+1}) &= 4, \text{when } i = 2, 3, 6, 7, \ldots \\
 f(v_i) &= 2, \text{when } i = 1, 2, 3, 4, \ldots \\
 f(v_i) &= 3, \text{when } i = 1, 2, 3, \ldots \\
 f(w_i) &= 4, \text{when } i = 1, 2, 3, 5, 6, 9, 10, \ldots \\
 f(w_i) &= 5, \text{when } i = 1, 2, 3, 4, 7, 8, \ldots \\
 f(w_i) &= 6, \text{when } i = 3, 4, 7, 8, \ldots
\end{align*}
\]

(6) (7) (8)

Illustration: \(P_3 \circ K_2 \)

The Lucky number of \(P_3 \circ K_2 \) is 5.

Illustration: \(P_4 \circ K_5 \)

The Lucky number of \(P_4 \circ K_5 \) is 8.
D. Theorem 3.4

The corona graph $P_n \odot C_d$ always admits a lucky edge labeling.

Proof:
In a graph $G = P_n \odot C_d$, construction of $V(G)$ and $E(G)$ as follows,
Let $\nu(G) = \nu(P_n) \cup (C_d^1) \cup \nu(C_d^2) \cup \ldots \cup \nu(C_d^n)$
where $\nu(P_n) = \{u_1, u_2, u_n\}$ and $\nu(C_d^i) = \{v_i, w_i, x_i, y_i; 1 \leq i \leq n\}$
and C_d^i is the i^{th} copy of C_d be the vertex set and edge set of G respectively. [6]

The corona of $P_n \odot C_d$ is given below.

$|\nu(G)| = 5n$ and $|E(G)| = 9n - 1$.

The vertex set can be defined as follows

\[f(u_1) = 1, \text{when } i = 1, 2, 5, 6, \ldots \quad (1) \]
\[f(u_2) = 6, \text{when } i = 3, 4, 7, 8, \ldots \quad (2) \]
\[f(v_1) = 2, \text{when } i = 1, 2, 3, \ldots \quad (3) \]
\[f(w_1) = 3, \text{when } i = 1, 2, 3, \ldots \quad (4) \]
\[f(x_1) = 4, \text{when } i = 1, 2, 3, \ldots \quad (5) \]
\[f(y_1) = 5, \text{when } i = 1, 2, 3, \ldots \quad (6) \]

Edge set can be defined as
\[f(u_1, v_1) = 2, \text{when } i = 1, 2, 5, \ldots \quad (7) \]
\[f(u_2, v_1) = 7, \text{when } i \text{ is an even } \quad (8) \]
\[f(u_1, w_1) = 12, \text{when } i = 3, 7, \ldots \quad (9) \]
\[f(v_1, w_1) = 5, \text{when } i = 1, 2, 3, \ldots \quad (10) \]
\[f(x_1, y_1) = 6, \text{when } i = 1, 2, 5, \ldots \quad (11) \]
\[f(u_1, x_1) = 11, \text{when } i = 3, 4, 7, \ldots \quad (12) \]
\[f(v_1, x_1) = 5, \text{when } i = 1, 2, 5, \ldots \quad (13) \]
\[f(u_1, y_1) = 10, \text{when } i = 3, 4, 7, \ldots \quad (14) \]
\[f(x_1, y_1) = 9, \text{when } i = 1, 2, 3, \ldots \quad (15) \]

Illustration: $P_3 \odot C_4$

The Lucky number of $P_3 \odot C_4$ is 9.

Illustration: $P_4 \odot C_4$

The Lucky number of $P_4 \odot C_4$ is 12.

III. CONCLUSION

Here we establish the fact the Lucky edge labeling based on special type of graphs that is $P_n \odot C_d, P_n \odot K_3, 3$-regular and 4-regular graphs. This can be extended for generalized Corona and Regular graphs.

REFERENCES

AUTHORS PROFILE

Mrs. Shalini Rajendra Babu, Pursuing Ph.D. in the area of Graph theory at BIHER, Chennai. She has presented papers in Conferences and published papers.

Dr. N. Ramya, obtained Ph.D. in the field of Graph theory. She published 15 papers in National as well international journals. She is working as a professor at BIHER Chennai.