Improvement in Cutoff Frequency of Microstrip Butterworth Low Pass Filter using DGS Technique

Kalyan Acharjya, Dheeraj Acharya, Girijashankar Sahoo, Chandra Shekhar Rajora

Abstract: This paper presents the design, analysis and fabrication of Butterworth Low pass filter with sharp rejection response using defected ground surface technique. The work is carried out to design a low pass filter with cut-off frequency 2.5 GHz to achieved the broad frequency response; the first step is to make a rectangle of 10x10mm at ground surface and the equivalent circuit for the DGS, subsequently followed to consequent L-C parameters extraction using analysis of S parameters response (EM simulation). The designed Butterworth low pass filter is realized and optimized using DGS (Defected Ground Structure) to attain a compact size, satisfactory transition sharpness along with low insertion loss in pass band and wide rejection in the stop band. The fabricated device showed the good conformity with theoretical and VNA measured result.

Index Terms: Low Pass Filter, Micro strip Filter, Butter worth, Filter, DGS

I. INTRODUCTION

Filters have applications in various fields of engineering and commonly used in various electronic devices to isolate noise or interference signal from surrounding environment. For instance, radio transmitter use filters to block harmonics or interference signal from surrounding environment. For instance, radio transmitter use filters to block harmonics or interference signal from surrounding environment. Filters have applications in various fields of engineering and commonly used in various electronic devices to isolate noise or interference signal from surrounding environment. For instance, radio transmitter use filters to block harmonics or interference signal from surrounding environment.

Latest development in modern wireless communication systems has urged for new high-quality miniature filters design to support modern devices.

II. Desining Of Butter worth Low pass filter [10]

Desining specification of 5th order Butterworth Low pass filter using Insertion loss method are shown in table 1.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Components</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>No. Of Element (N)</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>(R_s = R_L)</td>
<td>50Ω</td>
</tr>
<tr>
<td>3.</td>
<td>Cutoff frequency (f_c)</td>
<td>2.5GHz</td>
</tr>
<tr>
<td>4.</td>
<td>Substrate: GML</td>
<td>1000</td>
</tr>
<tr>
<td>5.</td>
<td>Permittivity of substrate (\epsilon_r)</td>
<td>3.2</td>
</tr>
<tr>
<td>6.</td>
<td>Height (h)</td>
<td>0.762mm</td>
</tr>
<tr>
<td>7.</td>
<td>Size of substrate</td>
<td>50x50mm</td>
</tr>
</tbody>
</table>

A. Technical Parameter of Butterworth LPF:

1. Insertion Loss/Attenuation loss:

\[N \ (\text{No. of Element}) = 10 \log \left(1 + \frac{w}{w_c}\right)^2 \]

2. Calculating Conductance:

\[g_k = 2 \sin \left(\frac{(2k-1)\pi}{2N}\right) \quad \text{where:} \quad -K = 0, 1, 2 \ldots \ldots , N \]

3. Inductance & Capacitance:

\[\text{Inductance } L = \frac{R_o L_p (g_0)}{w_c} \]

\[\text{Capacitance } C = \frac{C_p (g_0)}{R_c w_c} \]

4. Electrical length of capacitor & inductor

\[\beta L_{\text{capacitor}} = \frac{C_p Z_L}{R_p} \times \frac{180}{\pi} \]

\[\beta L_{\text{inductor}} = \frac{L_m R_p}{Z_h} \times \frac{180}{\pi} \]

Where: \(-C_p = \text{Normalized value of capacitor} \)

\(Z_L = \text{Lower impedance} \)

\(R_p = \text{Source resistance} \)

B. IMPLEMENTATION, ANALYSIS & SIMULATION OF LOW PASS FILTER:

For design the low pass Butterworth filter [1, 2] using above mentioned formulae [10], we have followed the following steps:

Step 1: Prototype design:

![Figure 1: Schematic of LPF filter](image)

Where:

\[g_0 = 1, \ g_1 = 0.6180, \ g_2 = 1.6180, \ g_3 = 2.000, \ g_4 = 1.6180, \ g_5 = 0.6180, \ g_6 = 1 \]
Improvement in Cutoff Frequency of Microstrip Butterworth Low Pass Filter using DGS Technique

Step 2: Impedance and frequency scaling:
The original resistance R_n, inductance L_n and capacitance C_n are modified by the following formulae by effect of new load impedance of R_o and cut-off frequency of ω_o.

$$R = \frac{R_o}{R_n}$$

$$L = \left(\frac{R_o L_n}{\omega_o}\right)$$

$$C = \frac{C_n}{R_o \omega_o}$$

Using the transformation with $R_o = 50\,\Omega$ and $\omega_o = 2\pi(2.5\times10^9)$ the new values are:

- $C_1 = 0.7872\,\text{pF}$; $L_2 = 5.1528\,\text{nH}$
- $C_3 = 2.5477\,\text{pF}$; $L_4 = 5.1528\,\text{nH}$
- $C_5 = 0.7872\,\text{pF}$

Step 3: Converting into distributed elements:
The ratio Z_H/Z_L should be as high as much possible, which is restricted by the practical design, which can be implemented on a printed circuit board. Typical values are $Z_H = 120$ to 150 Ω and $Z_L = 20$ Ω to 15 Ω, as a typical LPF design generally consists of irregular series inductors and shunt capacitors in a ladder configuration, here the design is implemented the filter on a PCB board by using variable high and low characteristic impedance section transmission lines [5]. Proposed design considered $Z_H = 120\,\Omega$ and $Z_L = 20\,\Omega$. The common relationship between inductance and capacitance with transmission line length are as follows (at the cutoff frequency ω_o):

$$\beta L_{\text{capacitor}} = \frac{C_n Z_L}{R_o} \times \frac{180}{\pi}$$

$$\beta L_{\text{inductor}} = \frac{L_n R_o}{Z_H} \times \frac{180}{\pi}$$

Physical length $l_C1 = \left(\frac{\text{Electrical length}}{360}\right)$

$$= \left(\frac{C}{\ell_c \sqrt{\varepsilon_r}}\right) \times (C/\ell_c \sqrt{\varepsilon_r})$$

$C_1 = 2.820\,\text{mm}$; $L_2 = 8.503\,\text{mm}$; $C_3 = 9.126\,\text{mm}$
$L_4 = 8.503\,\text{mm}$; $C_5 = 2.820\,\text{mm}$

<table>
<thead>
<tr>
<th>Element</th>
<th>Element Normalised Value (ℓ_ℓ)</th>
<th>Actual Element Value</th>
<th>Element Value</th>
<th>Width (W) mm</th>
<th>Length (L) mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.6180</td>
<td>0.7872 pF</td>
<td>6.3524</td>
<td>2.820</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>1.6180</td>
<td>5.1528 nH</td>
<td>0.5387</td>
<td>8.503</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>2.000</td>
<td>2.5477 pF</td>
<td>6.3524</td>
<td>9.126</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>1.6180</td>
<td>5.1528 nH</td>
<td>0.5387</td>
<td>8.503</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>0.6180</td>
<td>0.7872 pF</td>
<td>6.3524</td>
<td>2.820</td>
<td></td>
</tr>
</tbody>
</table>

To Sharp Rejection Using Defected Ground Structure [1,2]
The objective of structure like micro strip line with a centered slot at the ground plane has excellent applications in low pass filters for spurious band suppression which is called as Defected Ground Structure (DGS) [2, 3]. DGS adds an extra degree of freedom in microwave circuit design and opens the door to a wide range of application. It also added the slow-wave and band-stop features by varying the equivalent inductance and capacitance of the transmission line [13]. A compact Butter worth LPF [1, 2] with DGS and analyze the consequence of DGS parameter on the LPF. The size of DGS is 10x10 mm in ground side of LPF. The front and back side of conductor prototype are shown in figure 2 and 3 respectively.
III. SIMULATION RESULT

A. The response of the proposed design (with and without DGS) simulations results are shown in figure 4 and 5.

B. Measured Result Through Vna

The response of the designed filter measured through vector network analyzer are shown in figure 6 and 7, and attained the cutoff frequency 2.44 GHz for without DGS and 2.672 GHz with DGS.

Figure 4: Responses of LPF with DGS (2.5 GHz)

Figure 5: Responses of LPF with DGS (2.672 GHz)

Figure 6: Result of LPF without DGS. (2.44 GHz)

Figure 7: Responses of LPF with DGS (2.672 GHz)

Figure 8: Front side of Fabricated Design

Figure 9: Back side of Fabricated Design
IV. FABRICATION RESULT

After Fabrication, authors measured the result of design whether it has attained the proposed specifications or not. The table 2 showed the comparison between simulations and measured result and it attains the target requirements. The fabricated design is shown in figure 8 and 9 for both side patterns.

Table 4: Comparison Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Simulated Results/ Measured Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before DGS</td>
</tr>
<tr>
<td>Cut Off Frequency</td>
<td>2.5GHz/2.44GHz</td>
</tr>
</tbody>
</table>

V. CONCLUSION

The proposed work of Butterworth low pass filter with DGS was designed and fabricated. The presented 2.5GHz butter worth low pass filter have attained in the improvement up to 2.672GHz. The results obtained by manually by distributed parameters values using formulae does not gave the satisfactory results as there was a large shift in the cut-off frequency because of various stray inductances and fringing capacitances in the filter design. But in the values of distributed parameters obtained after end corrections gave the results very close to the desire results. Therapeutic to get the exact results, the designed was optimized [9] and it showed that by decreasing the inductance and corresponding length shifted the frequency to the right. The results obtained by Microstrip simulation area almost same with fabricated device, while the measured results showed a slight shift in cut-off frequency due to fabrication errors.

REFERENCES

1. Jong-Sik Lim, Member, IEEE, Chul-Soo Kim, Member, IEEE, Dal Ahn, Senior Member, IEEE, Yong-Chae Jeong, Member, IEEE, and Sangwook Nam, Member, IEEE “Design of Low-Pass Filters Using Defected Ground Structure” IEEE Transactions On Microwave Theory And Techniques, vol. 53, no. 8, Aug. 2005

AUTHORS’ PROFILES

Kalyan Acharjyahas received his Master in Electronics Design and Technology from Tezpur University (CentralUniversity), India. He is currently associated withJaipurNational University, Jaipur in Department of Electronics and Communication Engineering. His current research areas are Digital Image Processing, Antenna Design and VLSI Systems. He has vast experiences on MATLAB tool, and also holdinglife member ofUPRAI.

Dheeraj Acharya did his graduation from Bikaner Govt. Engineering College, Rajasthan. He has recently completed his M.Tech in Communication and Signal Processing from Jaipur National University. He has just started his research career in the field of Antenna Design, also he works on communication toolboxes for signal analysis and estimation.

Girijashankar Sahoo has received his M. Tech degree in Digital Communication Engineering from Indian Institute of Information Technology, Gwalior, India in 2010. He is qualified UGC NET and GATE exam. He has published numerous research papers in reputed journals, IEEE conference proceedings etc. He also serves as reviewer in IEEE and Springer journals. Presently he is serving as an Associate Professor at Jaipur National University, Jaipur, India. His areas of interest include antenna design, adaptive signal processing, biomedical signal processing, cooperative communications and OFDM systems.

Chandra Shekhar Rajora received B.E from Rajasthan University Jaipur,Rajasthan, India in 2005. At present he is pursuing M.Tech. in Digital Communication fromRajasthan Technical University, Jaipur, India. His special fields of interestare Optical Fiber Communication Systems and Antenna Design.