On Δ Generalised Star Semi-Closed Sets in Topological Spaces

S. Rajakumar

Abstract: A modern form of sets labeled $\delta g*s$-closed sets is imported in this material. A part of utilization of $\delta g*s$-closed sets and its resources are explained. A modernistic space called $\delta g*s-T^*_3/4$-space is also popularized.

Keywords: δ-closed sets, δ-open sets, $\delta g*s$-open sets, $\delta g*s$-closed sets and $\delta g*s-T^*_3/4$-space.

I INTRODUCTION

In 1968, Velicko [13] introduced the δ closed sets. Some authors([1], [4], [8], [10], [11]) continuing their studies on semi-closed sets and continuous maps on topological spaces. g^s-closed sets were made known by the topologist [14]. $\delta g*s$-closed sets and $\delta g*s$-space are popularized in this note by the author.

II PRELIMINARIES

In every place of this text (N, τ) or N perform topological spaces. Definitions of g, sg, gs, ag, δg, ag-closed sets are collected from [5], [2], [7], [6], [3], [12], [9], [14].

III. MAIN RESULTS

Definition 3.1 A division M of (N, τ) is termed as $\delta g*s$-closed if $clg(M) \subseteq V$ whenever $M \subseteq V$, V is g^s—open.

Theorem 3.2 Each one δ-closed \Rightarrow $\delta g*s$-closed set.

Proof. Approve $U \subseteq \delta$-closed, $V \supseteq g^s$-open consisting of U. As $clg(U)=U$ for each $U \subseteq U$ of N. Thus $clg(U) \subseteq U \Rightarrow \delta g*s$-closed.

Note 3.3, $\delta g*s$ -closed \Rightarrow δ-closed.

Example 3.4 Let $N = \{m, n, o, p\}$ with the topology $\tau = \{N, \varphi, \{m\}, \{n\}, \{m, n\}, \{m, n, o\}\}$. Though the set $\{o, p\}$ is $\delta g*s$--closed it is not δ-closed.

Proposition 3.5 $\delta g*s$ closed \Rightarrow open set.

Proof. Authorize $U = \delta g*s$-closed, $V =$ open set consists of U.

Here U is $\delta g*s$ closed, $clg(U) \subseteq U$ for each U of N. As $clg(U) \subseteq clg(U) \subseteq U$, consequently U is gclosed.

Example 3.6 Let $N = \{s, t, u, v\}$, $\tau = \{N, \varphi, \{s\}, \{t\}, \{s, t\}, \{t, u, v\}\}$. Then $\{v\}$ is g-closed set and $\neq \delta g*s$--closed in N. This example proves that g-closed $\neq \delta g*s$--closed.

Theorem 3.7 Every $\delta g*s$ -closed \Rightarrow gs-closed.

Proof. Presume $U = \delta g*s$-closed, $V =$ open set consists of U.

As cg (U) $\subseteq U$ for every $U \subseteq U$ of N. As $scg(U) \subseteq cg(U) \subseteq V$, $scg(U) \subseteq V \Rightarrow U$ is gs-closed.

Example 3.8 Let N=${a, \kappa, \theta, \varphi}$, $\tau = \{N, \varphi, \{a\}, \{\kappa\}, \{\kappa, \theta\}, \{\varphi\}\}$. Though $\{\theta\}$ is gs-closed $\neq \delta g*s$ --closed. This shows that gs-closed $\neq \delta g*s$ --closed.

Theorem 3.9 $\delta g*s$ -closed \Rightarrow ag-closed set.

Proof. For each U of N, It is clear that $aclg(U) \subseteq cg(U)$.

Example 3.10 Let $N = \{1, 2, 3, 4\}$, $\tau = \{N, \varphi, \{1\}, \{2\}, \{1, 2\}, \{2, 3, 4\}\}$. Then (1, 3) is ag-closed set $\delta g*s$-closed. However converse part fails in Theorem 3.9.

Theorem 3.11 $\delta g*s$ -closed \Rightarrow δ-closed set.

Proof. Suppose $U \subseteq \delta g*s$-closed, V the open set consists of U. As $clg(A) \subseteq U$, when $A \subseteq U$, U is g^s--open. There upon $clg(U) \subseteq U$, U is open. Thus U is δ-closed.

Example 3.12 Take $N = \{x, \psi, \gamma, \delta\}$, $\tau = \{N, \varphi, \{x\}, \{\psi\}, \{\psi, \gamma\}, \{\psi, \gamma, \delta\}\}$. Then $\{x, \delta\}$ is δ-closed set $\neq \delta g*s$-closed in N. It proves that confer gets blunder in Theorem 3.11.
Theorem 3.13 δg^s -closed \Rightarrow ag*-closed set.

Proof. For every D of (L, τ), $\text{cl}(D) \subseteq \text{cl}_D(D)$ is clear.

Example 3.14 Let $N = \{ \delta, \kappa, \lambda, \mu \}$, with the topology $\tau = \{ N, \varphi, \{ \delta \}, \{ \kappa \}, \{ \lambda, \mu \} \}$. Then $\{ \delta, \kappa, \lambda \}$ is ag^*-closed set $\neq \delta g^*$-closed in N. Hence exchange is not perfect in Theorem 3.13.

Note 3.15 Examples for relationships of δg^* -closed with more noted sets.

Remark 3.16 Self-reliant results with δg^* -closed are given below.

Illustration 3.17 Assume $N = \{ \delta, \sigma, \rho \}$, $\tau = \{ N, \varphi, \{ \delta \}, \{ \sigma, \rho \}, \{ \delta, \sigma, \rho \} \}$. Then $\{ \delta, \sigma \}$ is δg^* -closed but $\neq g^*$ -closed.

Example 3.18 Take $N = \{ \gamma, \rho, \sigma, s \}$ with the topology $\tau = \{ N, \varphi, \{ \gamma \}, \{ \gamma, \rho \}, \{ \sigma, s \}, \{ \gamma, \sigma, s \} \}$. Then $\{ \gamma, \rho \}$ is δg^* -closed but $\neq g^*$ -closed.

Illustration 3.19 Assume $N = \{ \delta, \sigma, \omega, \psi \}$ with the topology $\tau = \{ N, \varphi, \{ \delta \}, \{ \sigma \}, \{ \delta, \sigma, \omega, \psi \} \}$. Then $\{ \delta, \sigma \}$ is g^* -closed, ag-closed and $\neq \delta g^*$ -closed.

Illustration 3.20 Consider $N = \{ \gamma, \eta, \pi \}$ with the topology $\tau = \{ N, \varphi, \{ \gamma \}, \{ \gamma, \eta \}, \{ \pi, \rho \}, \{ \gamma, \pi, \rho \} \}$. Then $\{ \gamma \}$ is a-closed and $\neq \delta g^*$ -closed set.

IV. CHARACTERIZATIONS

Theorem 4.1 The limited combination of δg^* -closed sets $\Rightarrow \delta g^*$ -closed.

Proof. Endorse $\{ X_i \}_{i=1,2,...,n}$ be a limited set of δg^* -closed subsets N. Moreover for $N_i, \text{cl}(X_i) \subseteq U, i \in \{ 1, 2,...,n \}$. Hence $N = \bigcup U = \bigvee N_i$. Here U of g^*-open = g^*-open in N. V is g^*-open in N. In addition, $\bigcup \text{cl}(N_i) = \text{cl}(\bigcup N_i) \subseteq \text{cl}(N)$. Therefore $\bigcup N_i$ is δg^* -closed in N.

Observation 4.2 $\cap \delta g^*$ -closed sets in $L \neq \delta g^*$ -closed set. In example 3.14 $\{ \eta, \kappa, \lambda \} \cap \{ \eta, \kappa, \mu \} = \emptyset$ is $\neq \delta g^*$ -closed.

Theorem 4.3 If E is a δg^* -closed set contained in $\text{cl}_E(E) - E$, then $\text{cl}_E(E) - E \not\subseteq \text{ag^*} - \text{closed set}$.

Proof. Take U as δg^* -closed and assume G be a g^* -closed set contained in $\text{cl}_G(U) \subseteq G$. Now $G' = g^*$ -open set on N, likewise $G \subseteq G'$. As $U = \delta g^*$ -closed set, then $\text{cl}_G(U)$ $\subseteq G'$. Thus $G \subseteq (\text{cl}_G(U))^c$. Also $G \subseteq \text{cl}_G(U) = U$. Therefore $G \subseteq (\text{cl}_G(U))^c \cap (\text{cl}_G(U)) = \emptyset$ Thus $G = \emptyset$.

Theorem 4.4 In $N, U = g^*$ -open, δg^* -closed $\subseteq N$ then is δ-closed $\subseteq N$.

Proof. As g^* -open and δg^* -closed $= \cup U, \text{cl}_G(U) \subseteq U$. Hence U is δ-closed.

Theorem 4.5 In $T_{3/4}$-space each one δg^* -closed set $\Rightarrow \delta$-closed.

Proof. Consider U be δg^* -closed set of N, where N is $T_{3/4}$-Space. Here, each one δg^* -closed set $\Rightarrow \delta g$ closed. Therefore N is $T_{3/4}$-Space and U is δ-closed.

Theorem 4.6 In N, U is δ-closed and δg^* -closed if and only if $\text{cl}_G(U) - U = g^*$ -closed.

Proof. Necessity. Assume U be a δ-closed $\subseteq N$. Then $\text{cl}_G(U) = U$ and so $\text{cl}_G(U) - U = \varphi$, a g^* -closed.

Adequate As U is δg^* -closed by Theorem 4.3, $\text{cl}_G(A) - A \neq g^*$-closed. But $\text{cl}_G(U) - U = \varphi$. Thus $\text{cl}_G(U) = U$ Hence U is δ-closed.

V. APPLICATIONS

Definition 5.1 N is termed as δg^* - $T_{3/4}$-space if each δg^*-closed set $\Rightarrow \delta$-closed.

Theorem 5.2 Every $T_{3/4}$-space is a δg^*-T$_{3/4}$-space.

Proof. Here each δg^*-closed $\Rightarrow \delta g$-closed, the argument is clear.

Remark 5.3 δg^* - $T_{3/4}$-space $\neq T_{3/4}$-space.

Illustration 5.4 Consider $N = \{ \delta, \pi, \theta \}$ and $\tau = \{ N, \varphi, \{ \delta \} \}$. N is a δg^* - $T_{3/4}$-space but not a $T_{3/4}$-space.

Further details and examples can be found in the referenced sources.
Theorem 5.5 Every δg*s - T*₃₄₃-space is a T₉₀₆-space.

Proof. Concede N be a δg*s - T*₃₄₃-space, then each singleton is g*s-closed or δ-open. As each singleton is g*s-closed or α-open, N is a T₉₀₆-space.

Note 5.6 T₉₀₆-space ≠ δg*s - T*₃₄₃-space.

Illustration 5.7 Consider N= { χ, π, ξ } and τ= { N, φ, {φ} }. N is a T₉₀₆-space but ≠ δg*s - T*₃₄₃-space.

Remark 5.8 δg*s - T*₃₄₃-space and T₁/₂-space are self-reliant to one another.

Illustration 5.9 Take N = {χ, ψ, ζ} and τ= {N, φ, {φ} }. (N, τ) is δg*s - T*₃₄₃-space and ≠ T₁/₂-space.

Illustration 5.10 Assume N = {λ, ζ, θ} and τ= {N, φ, {φ}, {φ}, {φ}, {φ}, {φ}}. N is a T₁/₂-space and ≠ δg*s - T*₃₄₃-space.

ACKNOWLEDGMENT

The biographer desire to give thanks to the conciliators for their impressive commentary and verdict which will guide to develop this publication.

REFERENCES

AUTHORS PROFILE

Dr. S. Rajakumar is currently a Assistant Professor in the Department of Mathematics in Kalasalingam Academy of Research And Education (Deemed to be University), Krishnankoil-626126. He obtained his Ph.D, degree in Manonmaniam Sundaranar University, Tirunelveli. His area of research interest is Topology and Bitopological spaces. He has 17+ years of teaching experience. He has a few publications in standard journals.