Abstract: An l-edge-weighting of a graph G is a map \(\mathcal{E}: E(G) \rightarrow \{1, 2, 3, \ldots, l\} \), where \(l \) is a positive integer. For a vertex \(v \in V(G) \), the weight \(S_G(v) \) is the sum of edge-weights appearing on the edges incident at \(v \) under the edge-weighting \(\mathcal{E} \). An l-edge-weighting of G is coprime irregular edge-weighting of G if \(\gcd(S_G(u), S_G(v)) = 1 \) for every pair of adjacent vertices \(u \) and \(v \) in \(G \). A graph \(G \) is coprime irregular if \(G \) admits a coprime irregular edge-weighting.

Example 2.2. A graph \(G \) given in Figure 1.1 is coprime irregular.

Theorem 2.3. Path \(P_n \) on \(n \geq 3 \) vertices is coprime irregular for all \(n \).

Proof. Let \(P_n = (v_1, v_2, v_3, \ldots, v_n) \). We now prove this theorem by considering the following cases.

Case (i) \(n \) is even.

Define an edge-weighting \(\mathcal{E} \) of \(P_n \) as follows. For all \(1 \leq i \leq n-1 \), let \(\mathcal{E}(v_i, v_{i+1}) = \begin{cases} 1 & \text{if } i \equiv 1 \text{ or } 2 \pmod{4} \\ 2 & \text{otherwise} \end{cases} \)

Then \(S_G(v_i) = 1 \), \(S_G(v_n) = 1 \) or 2 according as \(n \equiv 2 \pmod{4} \) or \(n \equiv 0 \pmod{4} \); and for each \(2 \leq i \leq n-1 \), we have

\[S_G(v_i) = \mathcal{E}(v_{i-1}, v_i) + \mathcal{E}(v_i, v_{i+1}) = \begin{cases} 4 & \text{if } i \equiv 0 \pmod{4} \\ 2 & \text{if } i \equiv 2 \pmod{4} \\ 3 & \text{otherwise} \end{cases} \]

It is not difficult to see that any two adjacent vertices of \(P_n \) whose weights are coprime under \(\mathcal{E} \) and thus \(P_n \) admits a coprime irregular edge-weighting.

Case (ii) \(n \) is odd.

Now, define for each \(1 \leq i \leq n-1 \),

\[\mathcal{E}(v_i, v_{i+1}) = \begin{cases} 1 & \text{if } i \equiv 2 \pmod{4} \\ 2 & \text{otherwise} \end{cases} \]

Then \(S_G(v_1) = 2 \), \(S_G(v_n) = 1 \) or 2 according as \(n \equiv 3 \pmod{4} \) or \(n \equiv 1 \pmod{4} \); and for all \(i = 2, 3, \ldots, n-1 \), we have

\[S_G(v_i) = \mathcal{E}(v_{i-1}, v_i) + \mathcal{E}(v_i, v_{i+1}) = \begin{cases} 3 & \text{if } i \equiv 0 \pmod{2} \\ 4 & \text{otherwise} \end{cases} \]

Obviously, the weights of any two adjacent vertices of \(P_n \) are coprime and thus \(P_n \) is coprime irregular.

Theorem 2.4. For all \(n \geq 4 \), the cycle \(C_n \) is coprime irregular.

Proof. We prove this result in the following two cases.

Case (i) \(n \) is odd.

Considering the edge-weighting \(\mathcal{E} \) of \(C_n \) defined as follows. For all \(i = 1, 2, 3, \ldots, n-1 \), let

\[\mathcal{E}(v_i, v_{i+1}) = \begin{cases} 1 & \text{if } i \equiv 1 \pmod{4} \\ 2 & \text{if } i \equiv 2 \pmod{4} \\ 3 & \text{if } i \equiv 3 \pmod{4} \\ 4 & \text{if } i \equiv 0 \pmod{4} \end{cases} \]

and let \(\mathcal{E}(v_n, v_1) = 1 \) or 3 according as \(n \equiv 1 \pmod{4} \) or \(n \equiv 3 \pmod{4} \). Then for any two adjacent vertices of \(C_n \), their weights are coprime. Thus \(\mathcal{E} \) is coprime irregular edge-weighting of \(C_n \) and hence \(C_n \) is coprime irregular.

Case (ii) \(n \) is even.

Assign \(\mathcal{E}(v_1, v_2) = 1 \), \(\mathcal{E}(v_2, v_3) = 2 \), \(\mathcal{E}(v_3, v_4) = 3 \) and \(\mathcal{E}(v_4, v_5) = 4 \) and for all the remaining vertices,
Coprime Irregular graphs

One can easily verify that the weights of any two adjacent vertices of \(C_n \) are coprime and so \(\mathcal{O} \) is a coprime irregular edge-weighting of \(C_n \). Hence \(C_n \) is coprime irregular.

Definition 2.5. A triangular snake graph \(TS_n \) is obtained from a path \((u_1, u_2, \ldots, u_{n-1}, u_n)\) by joining \(u_i \) and \(u_{i+1} \) to a new vertex \(v_i \) for \(i = 1, 2, \ldots, n \). A quadrilateral snake \(QS_n \) is obtained from the path \((u_1, u_2, \ldots, u_{n-1}, u_n)\) by introducing \(n \) copies of \(K_2 \), say \(v_1w_1, v_2w_2, \ldots, v_nw_n \) and joining \(v_i \) to \(u_i \) and \(w_i \) to \(u_{i+1} \) for \(i = 1, 2, \ldots, n \).

Theorem 2.6. The triangular snake graph \(TS_n \) is coprime irregular for all \(n \).

Proof. Suppose \(n \) is even. Now we define an edge-weighting \(\mathcal{O} \) as follows. For all \(1 \leq i \leq n \), let \(\mathcal{O}(u_i, v_i) = 1 \), \(\mathcal{O}(v_i, u_{i+1}) = 2 \) and \(\mathcal{O}(u_{i+1}, u_i) = 4 \) and \(\mathcal{O}(u_{i+1}, v_i) = \begin{cases} 2 & \text{if } i \equiv 0 \text{ or } 1 \pmod{4} \\ 4 & \text{otherwise} \end{cases} \).

For \(n = 8 \), the graph \(TS_8 \) and edge-weighting \(\mathcal{O} \) are shown in Figure 2.

![Figure 2](image2)

Certainly, by the definition of \(\mathcal{O} \), we have

\[
S_{\mathcal{O}}(u_i) = \begin{cases} 3 & \text{if } i \equiv 0 \pmod{4} \\ 4 & \text{if } i \equiv 1 \pmod{4} \\ 5 & \text{if } i \equiv 2 \pmod{4} \\ 7 & \text{if } i \equiv 3 \pmod{4} \end{cases}
\]

Clearly, the weights of any two adjacent vertices of \(TS_n \) are coprime and hence \(\mathcal{O} \) is a coprime irregular edge-weighting of \(TS_n \).

On the other hand, let us assume that \(n \) is odd. Consider the edge-weighting \(\mathcal{O} \) of \(TS_n \) defined as follows.

For all \(i = 1, 2, \ldots, n \), \(\mathcal{O}(u_i, v_i) = \mathcal{O}(v_i, u_{i+1}) = 1 \) and \(\mathcal{O}(u_{i+1}, v_i) = \begin{cases} 2 & \text{if } i \equiv 1 \pmod{4} \\ 3 & \text{if } i \equiv 0 \pmod{4} \\ 4 & \text{otherwise} \end{cases} \).

For \(n = 9 \), the graph \(TS_9 \) and its edge-weighting given in the following Figure 3.

![Figure 3](image3)

Then \(S_{\mathcal{O}}(u_1) = 3, S_{\mathcal{O}}(u_{n+1}) = 3 \) or \(5 \) according as \(n \equiv 1 \pmod{4} \) or \(n \equiv 3 \pmod{4} \); and for all \(i = 1, 2, \ldots, n \), we have

\[
S_{\mathcal{O}}(u_i) = \mathcal{O}(u_i, v_i) + \mathcal{O}(u_i, u_{i+1}) + \mathcal{O}(u_{i+1}, u_i) + \mathcal{O}(u_{i+1}, v_i)
\]

Obviously, the weights of any two adjacent vertices of \(TS_n \) is a coprime irregular.

Theorem 2.7. For all \(n \), the quadrilateral snake graph \(QS_n \) is coprime irregular.

Proof. Consider the following cases.

Case 1. \(n \) is even.

Consider the edge-weighting \(\mathcal{O} \) of quadrilateral snake defined as follows.

For all \(i = 1, 2, \ldots, n \),

\[
\mathcal{O}(u_i, v_i) = \mathcal{O}(v_i, w_i) = 2, \mathcal{O}(v_i, u_{i+1}) = 3 \text{ and } \mathcal{O}(u_i, u_{i+1}) = \begin{cases} 1 & \text{if } i \equiv 2 \pmod{4} \\ 3 & \text{if } i \equiv 0 \text{ or } 1 \pmod{4} \\ 5 & \text{otherwise} \end{cases}
\]

For \(n = 6 \), the graph \(QS_6 \) and its edge-weighting given in Figure 4.

![Figure 4](image4)

Then \(S_{\mathcal{O}}(u_1) = 5, S_{\mathcal{O}}(u_{n+1}) = 4 \) or \(6 \) according as \(n \equiv 3 \pmod{4} \) or \(n \equiv 1 \pmod{4} \); and for all \(i = 1, 2, \ldots, n \), we have

\[
S_{\mathcal{O}}(u_i) = \mathcal{O}(u_i, v_i) + \mathcal{O}(u_i, u_{i+1}) + \mathcal{O}(u_{i+1}, u_i) + \mathcal{O}(u_{i+1}, v_i)
\]

Clearly, the weights of any two adjacent vertices are coprime and so \(\mathcal{O} \) is a coprime irregular edge-weighting of \(QS_n \). Therefore the graph \(QS_n \) is coprime irregular.

Case 2. \(n \) is odd

Consider the edge-weighting \(\mathcal{O} \) of the quadrilateral snake defined as follows.

For all \(i = 1, 2, \ldots, n \),

\[
\mathcal{O}(u_i, v_i) = \mathcal{O}(v_i, w_i) = 3, \mathcal{O}(u_i, v_{i+1}) = 4 \text{ and } \mathcal{O}(u_{i+1}, u_i) = \begin{cases} 1 & \text{if } i \equiv 2 \pmod{4} \\ 2 & \text{if } i \equiv 1 \pmod{4} \\ 3 & \text{if } i \equiv 0 \pmod{4} \\ 4 & \text{if } i \equiv 3 \pmod{4} \end{cases}
\]

For \(n = 5 \), the graph \(QS_5 \) and its edge-weighting illustrated in Figure 5.

![Figure 5](image5)
Then \(S_G(u_1) = 4 \), \(S_G(u_{n+1}) = 6 \) or 8 according as \(n \equiv 2 \pmod{4} \) or \(n \equiv 0 \pmod{4} \) and for all \(i=2, 3, \ldots, n \), we have
\[
S_G(u_i) = \{ u_{i-1}v_i + \mathcal{O}(u_{i-1}u_i) + \mathcal{O}(u_{i-1}u_i') + \mathcal{O}(u_{i-1}v_i') \\
\{ \begin{array}{ll}
9 & \text{if } i \equiv 2 \pmod{4} \\
11 & \text{if } i \equiv 1 \pmod{4} \\
13 & \text{otherwise}.
\end{array} \}
\]

Certainly from the above, the weights of any two adjacent vertices are coprime and so \(\mathcal{O} \) is a coprime irregular edge-weighting of \(QS_n \). Hence \(QS_n \) is coprime irregular.

Definition 2.8. The corona \(G^* \) of a graph \(G \) is the graph obtained from \(G \) by attaching exactly one pendant edge at each of the vertices of \(G \).

Theorem 2.9. Corona of a triangular snake graph is coprime irregular.

Proof. Consider the following cases.

Case 1. \(n \) is even.

Define an edge-weighting \(\mathcal{O} \) of the corona of a triangular snake as follows.

For all \(i=1, 2, 3, \ldots, n \), define
\[
\mathcal{O}(u_i) = \mathcal{O}(u_{i-1}v_i) + \mathcal{O}(v_iu_i') = \mathcal{O}(u_{i+1}v_i) = 1, \mathcal{O}(u_{i+1}u_i') = 2 \text{ if } i \equiv 0 \pmod{4} \\
3 \text{ if } i \equiv 1 \pmod{4} \\
5 \text{ if } i \equiv 2 \pmod{4} \\
6 \text{ if } i \equiv 3 \pmod{4}
\]

and for all \(i=1, 2, 3, \ldots, n-1 \), \(\mathcal{O}(u_i) = \mathcal{O}(u_{i-1}v_i) = \mathcal{O}(v_iu_i') = 1, \mathcal{O}(u_{i+1}v_i) = \mathcal{O}(u_{i+1}u_i') = 1 \).

For the corona of a triangular snake \(TS_n \) as given in Figure 6.

![Figure 6](image)

Then \(S_G(v_1) = 3 \), \(S_G(v_i') = 1 \) and \(\mathcal{O}(v_i) = 1 \), for all \(i=1, 2, 3, 4, \ldots, n \), we have
\[
S_G(u_i) = \{ u_{i-1}v_i + \mathcal{O}(u_{i-1}u_i) + \mathcal{O}(u_{i-1}u_i') + \mathcal{O}(u_{i-1}v_i') \\
\{ \begin{array}{ll}
8 & \text{if } i \equiv 1 \pmod{4} \\
11 & \text{if } i \equiv 0 \pmod{4} \\
13 & \text{otherwise}.
\end{array} \}
\]

Clearly, the weights of any two adjacent vertices are relatively prime and hence \(\mathcal{O} \) is a coprime irregular edge-weighting of corona of a triangular snake. So that the corona of a triangular snake is coprime irregular edge-weighting. Hence case 2.

Theorem 2.7. Corona of a quadrilateral snake graph is coprime irregular for all \(n \).

Proof. We prove the theorem in the following cases.

Case 1. \(n \) is odd

Define an edge-weighting \(\mathcal{O} \) of the corona of a quadrilateral snake as follows.

For all \(i=1, 2, 3, \ldots, n-1 \), assign
\[
\mathcal{O}(u_iu_i') = \mathcal{O}(v_iu_i') = \mathcal{O}(u_iu_i') = 1, \mathcal{O}(u_iu_i') = 2 \text{ and } \mathcal{O}(u_iu_i') = 3
\]

and for all \(i=1, 2, 3, \ldots, n-1 \), \(\mathcal{O}(u_i) = \mathcal{O}(u_{i+1}v_i) = \mathcal{O}(v_iu_i') = 1, \mathcal{O}(u_{i+1}v_i) = 2 \) and \(\mathcal{O}(u_{i+1}u_i') = 3 \).

Then \(S_G(v_1) = 4 \), \(S_G(v_i') = 5 \) and \(\mathcal{O}(v_i) = 1 \), for all \(i=1, 2, 3, 4, \ldots, n-1 \), we have
\[
S_G(u_i) = \{ u_{i-1}v_i + \mathcal{O}(u_{i-1}u_i) + \mathcal{O}(u_{i-1}u_i') + \mathcal{O}(u_{i-1}v_i') \\
\{ \begin{array}{ll}
8 & \text{if } i \equiv 1 \pmod{6} \\
10 & \text{if } i \equiv 2 \pmod{6} \\
12 & \text{if } i \equiv 3 \pmod{6} \\
14 & \text{if } i \equiv 4 \pmod{6} \\
16 & \text{if } i \equiv 5 \pmod{6} \\
18 & \text{if } i \equiv 0 \pmod{6}
\end{array} \}
\]

Clearly, the weights of any two adjacent vertices are relatively prime and hence \(\mathcal{O} \) is a coprime irregular edge-weighting of corona of a quadrilateral snake. So that the corona of a quadrilateral snake is coprime irregular edge-weighting.
Case 2. \(n \) is even

Define an edge-weighting \(\mathcal{O} \) of the corona of a quadrilateral snake as follows. For all \(i=1,2,\ldots,n-1 \),
\[
\mathcal{O}(v_iw_i) = \mathcal{O}(v'_i w'_i) = \mathcal{O}(u_i t_i) = \mathcal{O}(u_i t'_i) = \mathcal{O}(v'_i v'_i) = 1,
\]
\[
\mathcal{O}(u_i v_i) = 2 \quad \text{and} \quad \mathcal{O}(u_i+1 v'_i) = 3 \quad \text{and}
\]
\[
\mathcal{O}(u_i u_{i+1}) = \begin{cases}
1 & \text{if } i \equiv 2 \pmod{4} \\
2 & \text{if } i \equiv 1 \pmod{4} \\
3 & \text{if } i \equiv 0 \pmod{4} \\
4 & \text{if } i \equiv 3 \pmod{4}
\end{cases}
\]
and for all \(i=1,2,3,\ldots,n-1 \), \(\mathcal{O}(v_i w_i) = \mathcal{O}(v'_i w'_i) = \mathcal{O}(u_i t_i) = \mathcal{O}(u_i t'_i) = \mathcal{O}(v'_i v'_i) = 1, \mathcal{O}(u_i v_i) = 2 \) and \(\mathcal{O}(u_i+1 v'_i) = 3 \).

The corona of a quadrilateral snake \(QS_n \) as given in Figure 9.

![Figure 9](image-url)

Then \(S_0(v_i) = 4, S_0(v'_i) = 5, S_0(w_i) = S_0(w'_i) = S_0(t_i) = S_0(t'_i) = 1 \), for all \(i=1,2,3,4,\ldots,n-1 \), \(S_0(u_i) = 5 \), \(S_0(u_{n+1}) = 6 \) (or) \(8 \) according as \(n \equiv 2 \pmod{6} \) or \(n \equiv 1 \pmod{6} \) or \(n \equiv 0 \pmod{6} \) where \(k \geq 0 \) is an integer and for all \(i=2,3,4,\ldots,n-1 \), we have
\[
S_0(u_i) = \mathcal{O}(u_i v_i) + \mathcal{O}(u_i v'_i) + \mathcal{O}(u_i u_{i+1}) + \mathcal{O}(u_i u_{i+1}) + \mathcal{O}(u_i u_{i+1}) = \\
S_0(u_i) = 9 \quad \text{if } i \equiv 2 \pmod{4} \quad \text{or} \quad i \equiv 1 \pmod{4} \quad \text{or} \quad S_0(u_i) = 11 \quad \text{if } i \equiv 0 \pmod{4} \quad \text{or} \quad S_0(u_i) = 13 \quad \text{otherwise}.
\]

Clearly, the weights of any two adjacent vertices are coprime and hence \(\mathcal{O} \) is a coprime irregular edge-weighting of corona of a quadrilateral snake. So that the corona of a quadrilateral snake is coprime irregular edge-weighting.

III. CONCLUSION AND SCOPE

In this paper, we have introduced a coprime irregular edge weighting of graphs and proved some classes of graphs are coprime irregular. Even though, there is a wide scope for further research on this parameter. The following are some interesting directions for future research.

1. Find more classes of coprime irregular graphs.
2. Obtaining a necessary or sufficient condition for a graph to be coprime irregular is worthy trying.
3. It seems to us that the problem of characterizing trees which are coprime irregular would be very interesting.

ACKNOWLEDGMENT

The author wishes to thank the Management for their motivation and support for this research work.

REFERENCES