Queueing Analysis on Multiple Vacation Policies and Reneging

P. Suthersan, S. MaragathaSundari

Abstract: We study a non markovian queue which renders service to the customers. After the completion of service the server ought to go for the compulsory vacation stage by stage in succession. We consider one of the customer’s behaviors reneging to occur when the server’s vacation is extended. Using Supplementary variable technique the system performance measures is derived.

Keywords: Stages of service, Optional extended vacation, Reneging, Extended Vacation

I. INTRODUCTION

II. MATHEMATICAL DESCRIPTION OF THE QUEUEING MODEL

The arithmetical interpretation of the Queuing framework has the capacity to be described by the resulting hypothesis:

Customer’s arrival follows Poisson procedure. There is one server giving administration. The organization time seeks after general (arbitrary) course with first basic dispersion function H(x) and thickness work h(x). Let \(\theta_1(x) \) dx be the prohibitive chance of organization finish of the principle period of organization in the midst of the interval (x,x+dx), given that the snuck past time is x, so that

\[
\theta_1(x) = -\frac{h(x)}{1-H(x)}
\]

For First stage of compulsory vacation ,

\[
\theta_2(x) = \frac{u(x)}{1-u(x)} , \quad u(x) = e^{-\int_0^x \theta_1(x) \, dx}
\]

For Second Stage of compulsory vacation,

\[
\theta_3(x) = \frac{m(x)}{1-M(x)} , \quad m(x) = \theta_3(x)e^{-\int_0^x \theta_2(x) \, dx}
\]

For Optional Extended Vacation,

\[
\theta_4(x) = \frac{f(x)}{1-F(x)} , \quad f(x) = \theta_4(x)e^{-\int_0^x \theta_3(x) \, dx}
\]

Reneging occur during extended vacation with probability \(r \).

III. PROBABILITY GENERATING FUNCTION

\[
K_n(x,z) = \sum_{n=1}^{\infty} z^n K_n(x) ; \quad K_n(x) = \sum_{n=1}^{\infty} z^n K_n , \quad |z| \leq 1
\]

\[
C_n^{(1)}(x,z) = \sum_{n=1}^{\infty} z^n C_n^{(1)}(x) ; \quad C_n^{(1)}(x) = \sum_{n=1}^{\infty} z^n C_n^{(1)}
\]

\[
E_n^{(1)}(x,z) = \sum_{n=1}^{\infty} z^n E_n^{(1)}(x) ; \quad E_n^{(1)}(x) = \sum_{n=1}^{\infty} z^n E_n
\]

IV. STEADY STATE CONDITIONS OVERSEEING THE FRAMEWORK

\[
\frac{\partial}{\partial x} K_n(x) + \frac{\partial}{\partial x} (\rho^2 + \theta_1(x)) K_n(x) = \lambda^P K_{n-1}(x) \tag{1}
\]

\[
\frac{\partial}{\partial x} K_0(x) + \frac{\partial}{\partial x} (\rho^2 + \theta_1(x)) K_0(x) = 0 \tag{2}
\]

\[
\frac{\partial}{\partial x} C_n^{(1)}(x) + \frac{\partial}{\partial x} (\rho^2 + \theta_2(x)) C_n^{(1)}(x) = \lambda^P C_{n-1}^{(1)}(x) \tag{3}
\]

\[
\frac{\partial}{\partial x} C_0^{(1)}(x) + \frac{\partial}{\partial x} (\rho^2 + \theta_2(x)) C_0^{(1)}(x) = 0 \tag{4}
\]

\[
\frac{\partial}{\partial x} C_n^{(2)}(x) + \frac{\partial}{\partial x} (\rho^2 + \theta_3(x)) C_n^{(2)}(x) = \lambda^P C_{n-1}^{(2)}(x) \tag{5}
\]

\[
\frac{\partial}{\partial x} C_0^{(2)}(x) + \frac{\partial}{\partial x} (\rho^2 + \theta_3(x)) C_0^{(2)}(x) = 0 \tag{6}
\]

\[
\frac{\partial}{\partial x} E_n^{(1)}(x) + \frac{\partial}{\partial x} (\rho^2 + \theta_4(x) + \varepsilon) E_n^{(1)}(x) = \lambda^P E_{n-1}^{(1)}(x) + \xi \tag{7}
\]

where \(x > 0, n \geq 1 \).
V. BOUNDARY CONDITIONS

The above set of equations is to be solved under the following boundary conditions at $x = 0$ and for $x \geq 1$

\[
K_n(0) = \int_0^\infty K_{n+1}(x) \theta_1(x) dx + (1 - r) \int_0^\infty C^{(2)}_{n-1}(x) \theta_3(x) dx + \int_0^\infty K_n(x) \theta_4(x) dx
\]

(10)

\[
C^{(1)}_n(0) = \int_0^\infty K_n(x) \theta_1(x) dx
\]

(11)

\[
C^{(2)}_n(0) = \int_0^\infty C^{(1)}_n(x) \theta_2(x) dx
\]

(12)

\[
E_n(0) = r \int_0^\infty C^{(2)}_n(x) \theta_2(x) dx
\]

(13)

Multiply (1) by z^n and sum over n from 1 to ∞. Adding to (2), we get

\[
\frac{\partial}{\partial x} K_n(x, z) + (\lambda' + \theta_1(x) - \lambda P z) K_n(x, z) = 0
\]

(14)

\[
\frac{\partial}{\partial x} C^{(2)}_n(x, z) + (\lambda' + \theta_2(x) - \lambda' P z) C^{(2)}_n(x, z) = 0
\]

(15)

\[
\frac{\partial}{\partial x} C^{(3)}_n(x, z) + (\lambda' + \theta_3(x) - \lambda' P z) C^{(3)}_n(x, z) = 0
\]

(16)

\[
\frac{\partial}{\partial x} E_n(x, z) + (\lambda' + \theta_4(x) - \lambda' P z + \xi - \frac{\lambda}{x}) K_n(x, z) = 0
\]

(17)

Next applying the procedure of supplementary variable for the boundary conditions, we have

\[
K_n(0, z) = \int_0^\infty K_n(x, z) \theta_1(x) dx + (1 - r) \int_0^\infty C^{(2)}_{n-1}(x, z) \theta_3(x) dx + \int_0^\infty K_n(x, z) \theta_4(x) dx
\]

(18)

\[
C^{(1)}_n(0, z) = \int_0^\infty K_n(x, z) \theta_1(x) dx
\]

(19)

\[
C^{(2)}_n(0, z) = \int_0^\infty C^{(1)}_n(x, z) \theta_2(x) dx
\]

(20)

\[
E_n(0, z) = r \int_0^\infty C^{(2)}_n(x, z) \theta_2(x) dx
\]

(21)

Integrating (14) from 0 to ∞, we get

\[
K_n(x, z) = K_n(0, z) e^{-(\lambda' - \lambda P z)x - \lambda' \theta_1(x) \theta_4 \gamma(x) dx}
\]

(22)

Again integrating the above by parts, we get

\[
K_n(z) = K_n(0, z) [1 - \frac{J_1(A)}{A}]
\]

(23)

where

\[
J_1(A) = \int_0^\infty e^{-(\lambda' - \lambda P z)x - \lambda' \theta_1(x) \theta_4 \gamma(x) dx}
\]

is the Laplace Stieltje's transform of service time.

Again multiplying (22) by $\theta_1(x)$ on both the sides and integrating over x, we get

\[
\int_0^\infty K_n(x, z) \theta_1(x) dx = K_n(0, z) J_1(A)
\]

(24)

Similarly for vacation process, we have

\[
C^{(1)}_n(0, z) = \frac{J_1(A)}{A}
\]

(25)

\[
E_n(0, z) = \int_0^\infty C^{(2)}_n(x, z) \theta_2(x) dx = K_n(0, z) J_1(A) J_2(A)
\]

(26)

VI. LIKELIHOOD CREATING CAPACITY OF THE LINE ESTIMATE

To discover the likelihood making point of confinement of the line check paying little personality to the condition of the structure, we let $Y_{\mathcal{Q}}(z)$ be the p.g.f. of the line length

\[
F(z) = K_n(z) + C^{(1)}_n(z) + C^{(2)}_n(z) + E_n(z)
\]

(36)

VII. NORMALIZATION CONDITION

\[
F(1) + S = 1
\]

Gives the idle time S and the Utilization factor.

Idle time

\[
S = \frac{d'(1)}{d(1) + N'(1)}
\]

(37)

Utilization factor, $\rho = 1 - S$

(38)

\[
F(1) = \lim_{t \to 1} \frac{0}{\theta_4 \text{indeterminate form}}
\]

Hence applying L'Hopital's rule, we get

\[
F(1) = \frac{d'(1)}{d'(1) + N'(1)}
\]

(39)
VII. SYSTEM QUEUE PERFORMANCE MEASURES

Let \(L_q \) a chance to demonstrate the reliable state typical number of customers in the line. By then

\[
L_q = \lim_{z \to 1} \frac{d}{dz} F(z) |_{z=1} = \frac{d}{dz} \left(\frac{N(z)}{D(z)} \right) |_{z=1}
\]

Where \(N(Z) \) and \(D(Z) \) are the numerator and denominator of (36).

Since \(F(z) = \frac{z}{\beta} \) at \(z = 1 \), we utilize two fold separation and get

\[
L_q = \lim_{z \to 1} \frac{d}{dz} Q_q(z) = \frac{\beta^2(1)N'(1) - \beta^2(1)N'(1)}{2(\beta^2(1))^2} \quad (40)
\]

\[
N'(1) = \beta^2[E(J_1) + E(J_2) + E(J_3)] + E(J_4) \quad (41)
\]

\[
N'(1) = (\beta^2)^2 [E(J_1^2) + 2E(J_1)E(J_2) + 2E(J_1)E(J_3) + 2E(J_2)E(J_3) + E(J_3)] \quad (42)
\]

\[
D'(1) = 1 - \beta^2 E(J_1) - (1 - \rho E(J_4)) \beta^2 E(J_1) + E(J_2) + E(J_3) + \rho E(J_4)(-\beta^2 + \xi) \quad (43)
\]

\[
D'(1) = -(\beta^2)^2 E(J_1^2) + 2E(J_1)(-\beta^2 + \xi) E(J_1) + 2E(J_2) + (1 + \rho)(\beta^2)^2 E(J_1) + 2E(J_2)E(J_3) + 2E(J_2)E(J_3) + E(J_3) + (E(J_1) + E(J_2) + E(J_3))(-\beta^2 + \xi) - \beta^2 E(J_3)(-\lambda + \xi)^2 \quad (44)
\]

Substituting (40) – (44) in (40), we obtain \(L_q \) and all the other measures using Little’s formula

\[
W_q = \frac{L_q}{\lambda}, \quad W = \frac{\rho}{\lambda}, \quad L = L_q + \rho.
\]

IX. NUMERICAL JUSTIFICATION OF THE MODEL

Assume that service time follows exponential distribution. Assume that service time follows exponential distribution in particular and based on this condition, the numerical justification is elaborated below:

The values are collected accordingly:

\[
E(J_1) = \frac{1}{\theta_1}, \quad E(J_2) = \frac{1}{\theta_2}, \quad E(J_3) = \frac{1}{\theta_3}, \quad E(J_4) = \frac{1}{\theta_4}, \quad E(J_1^2) = \frac{2}{\theta_1^2}, \quad E(J_2^2) = \frac{2}{\theta_2^2}, \quad E(J_3^2) = \frac{2}{\theta_3^2}, \quad E(J_4^2) = \frac{2}{\theta_4^2}, \quad \rho = 0.5, \xi = 1, \theta_1 = 1.5, \theta_2 = 2, \theta_3 = 2.5, \theta_4 = 3, \lambda = 3.5
\]

<table>
<thead>
<tr>
<th>Q</th>
<th>(\rho)</th>
<th>(L_q)</th>
<th>(L)</th>
<th>(W_q)</th>
<th>(W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4698</td>
<td>0.5302</td>
<td>4.495</td>
<td>5.0252</td>
<td>1.2843</td>
<td>1.4358</td>
</tr>
<tr>
<td>0.462</td>
<td>0.538</td>
<td>6.6339</td>
<td>7.1719</td>
<td>1.8954</td>
<td>2.0491</td>
</tr>
<tr>
<td>0.4565</td>
<td>0.5435</td>
<td>8.2221</td>
<td>8.7856</td>
<td>2.3492</td>
<td>2.5045</td>
</tr>
<tr>
<td>0.4485</td>
<td>0.5515</td>
<td>10.8835</td>
<td>11.435</td>
<td>3.1096</td>
<td>3.2671</td>
</tr>
<tr>
<td>0.4339</td>
<td>0.5661</td>
<td>14.0351</td>
<td>14.6012</td>
<td>4.01</td>
<td>4.1718</td>
</tr>
</tbody>
</table>

In Table 1, keeping the majority of the parameters dependable and developing the input favorable position parameter alone, it prompts an expansion in all the execution measures obviously. Like way in Table 2, the likelihood of association intrusion makes the structure to a little expansion in the execution measures. All the above outcomes are as expected. Graphical structures still stresses the model to a reasonable comprehension.

X. NUMERICAL DISCUSSION

In Table 1, keeping the majority of the parameters dependable and developing the input favorable position parameter alone, it prompts an expansion in all the execution measures obviously. Like way in Table 2, the likelihood of association intrusion makes the structure to a little expansion in the execution measures. All the above outcomes are as expected. Graphical structures still stresses the model to a reasonable comprehension.

XI. CONCLUSION

The model described above particularly cleared up the administration, stages of compulsory vacation and optional extended vacation in a non markovian covering model. Every one of these parameters has an effect over all the execution measures. The outcomes are not surprisingly. As a future work, a remain by server, feedback service, break down, reservice can be introduced in the midst of the period of discrete. Fix procedure can be given in stages. Furthermore balking can be presented.
Queuing Analysis on Multiple Vacation Policies and Reneging

This showcase accept obvious employment in gathering units, correspondence structure, movement crossing focuses, and so forth.

REFERENCES

AUTHORS PROFILE

Mr. P. Suthersan pursued his B.Sc degree from Thiagarajar College, Madurai in 2013. He got his M.Sc degree from Thiagarajar College, Madurai in 2015. He obtained his M.Phil degree from Thiagarajar College, Madurai in 2016. He had 3 years of teaching experience. Now he is doing research area in Queueing Theory in Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil-626126, Tamilnadu, India.

Dr. S. Maragatha Sundari acquired her B.Ed. degree from V.O.C Teachers College, Tuticorin in 1993. She got her M.Sc. in Mathematics from Manonmaniam Sundaranar University; Tirunelveli in 1995 and her M.Phil. degree from Madurai Kamaraj University, Madurai in 2003. She did her Ph.D. in Sathyabama University, Chennai, India. She has more than 17 years of instructing knowledge. She has distributed more than 50 inquire about papers in national and international journals. She has displayed and distributed papers at national and international conferences. She is right now filling in as an Associate Professor in the Department of Mathematics in Kalasalingam Academy of Research And Education, Anand Nagar, Tamilnadu, Krishnankovil-626126, India. In addition, she is doing her research guidance for five research scholars.