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Abstract : In data analysis we use ICA is a basic tool, the aim 

is that find out a co-ordinate system where are the components of 

the data are independent.Mostly ICA method such as fastICA 

and Jointapproximation and diogonalization of eigen matrix 

(JADE), uses kurtosis as a metric of non gaussianity. But the 

assumption of kurtosis (fourth order cumulant) may not always 

satisfies practically. So there are one possible solution is to use 

skewness (third order cumulant) instead of kurtosis. In this paper 

we are going to introduce ICA based method, that approach is 

good for heavy-tailed (fourth order kurtosis) as well as 

asymmetric data (third order skewness). 

 

Keywords: ICA, Skewness, Kurtosis. 

I. INTRODUCTION 

If we want to unsupervised method for data analysis then 

we use independent component analysis (ICA) method. 

There are many applications of ICA like finance, fault 

deduction EEG analysis, MRI etc. 

Maximization of non-gaussianity(by using kurtosis) was 

classical approach used in mostly ICA method like fast ICA, 

but practically kurtosis sources may not always satisfied, 

because we assume that underlie density is symmetric but it 

is not( or really) and data set is bounded. So for weak -

kurtosis but skewed sources these methods could fail. 

Another metric using in ICA is skewness. 

There is an approach present by the authors based on the 

maximum likelihood estimation. In which they found co-

ordinate system that is optimally fitted to data and marginal 

densities also. Here authors model skewness that is based on 

division gaussian distribution that is well adopted for 

asymmetric data. 

In [5,6] authors used combination of kurtosis and 

skewness that is projection index. This method find out 

good results for weak kurtosis and skewed data but 

modelling is the main difficulty in this approach. 

In our work we use approximation the data density by 

product of division generalized gaussian distribution that is 

well suited for both model skewness and heavy-tailed 

(kurtosis) data. 

II. RELATED WORK 

Herault and Juttr in 1983 where present the firstICA 

method. They introduce algorithm based on neuro-memetic 

architecture anditerative real time [7]. By using third order 

cumulant (skewness) Gian-Nakis et al. find out issue of 

identifiability of ICAI in 1987, but it requirement and 

exhaustive search.Mathematical approach to the problem by 
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using higher order statistics, that is measure of fitting 

independent component was introduced by Lacoume and 

Ruiz [9]. The algebraic property of fourth order comulant 

was find out by Cardoso [10,11]. Now a days it is popular 

approach. 

Negentropy measures the fitting of independent 

component. FastICA uses negentropy. Entropy (differential) 

is concept of information theory used in negentropy. It 

measures independence of random variables that is mutual 

information. When we minimize MI and maximize the 

negentropy both have the same interpretation, so we can 

easily calculate without using additional parameters. 

Another approach is maximum likelihood estimation to 

estimate ICA. It is related to infomax. Likelihood is directly 

proportional to the negative of MI. Now maximum-

likelihood is most popular approach in ICA. In our paper we 

use maximum likelihood principle 

III. MAXIMUM LIKELIHOOD APPROACH TO 

ICA 

let a random vector y in R
d
, that is generated with density 

F. We know that component of y is independent iff 

∃ 1 − 𝐷 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑓1,……,𝑓𝑑  ∈

 𝐷R  𝑤𝑕𝑒𝑟𝑒 𝐷R  𝑖𝑠 𝑠𝑒𝑡 𝑜𝑓 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑜𝑛 𝑅, s.t. 

𝐹 𝑦 =  𝑓1   𝑦1 ∗ … ∗  𝑓𝑑   𝑦𝑑  , 𝑓𝑜𝑟 𝑦 =  𝑦1 , … 𝑦𝑑  ∈   𝑅𝑑  

let the components of y are not independent but why 

becomes independent by using basis A (W=A
-1

) 

𝐹 𝑦 = 𝑑𝑒𝑡  𝑊 ∗ 𝑓1   𝜔1
𝑇 𝑦 − 𝑚  ∗ …∗  𝑓𝑑   𝜔𝑑

𝑇 𝑦 −

𝑚, 𝑓𝑜𝑟 𝑦=𝑦1,…𝑦𝑑 ∈  𝑅𝑑    (1) 

Where W = A
-1 

ωi = i
th

 column of W 

𝜔𝑖
𝑇  = convert i

th
 column into vector 

m =  center of basis 

A = basis matrix 

𝜔1
𝑇 𝑦 −𝑚   = i

th
 coefficient of (y-m) 

F ⫁ 𝐷R  (the set of all densities given by (1) 

 

If we find out a basis, so that component becomes 

independent, we have to search matrix W and one 

dimensional densities such that the approximation  

𝐹 𝑦 ≈ 𝑑𝑒𝑡  𝑊 ∗ 𝑓1   𝜔1
𝑇 𝑦 − 𝑚  ∗ …

∗ 𝑓𝑑   𝜔𝑑
𝑇 𝑦 − 𝑚  , 𝑓𝑜𝑟 𝑦 =  𝑦1 , … 𝑦𝑑  

∈   𝑅𝑑  

is optimal. 
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Maximum likelihood estimation is used to solve above 

approximation of F(y) that will give formulation of ICA 

problem. 

3.1 Difficulties : 

Super Gaussian logistic distribution is very sensitive to 

outliers and for asymmetric data the approximation cannot 

give expected result. Divide normal distribution for heavy 

tails, this is (skew) model is not fit, that are very common in 

many data sets. 

So that we introduce new idea, model of densities that 

would not have two above disadvantages. We give the 

concept of estimation of both (Kurtosis and Skewness) 

measures simultaneously Divide Generalized Gaussian 

Density Distribution (DGGDD). 

The following formula is used for maximizing the MLE 

for the approximation of the above density equation.  

1

 𝑦 
  ln 𝑓𝑖 𝜔𝑖

𝑇 𝑦 − 𝑚   

𝑦 ∈ 𝑌

𝑑

𝑖=1

+ ln det 𝑊   

Where 

y ⫁R
d
 (is data set) 

F ⫁ 𝐷R  (is set of all densities) 

W = Unmixing matrix 

m = center of data  

𝑓1,……,𝑓𝑑  ∈  𝐹 ( Densities ) 

should be maximized 

In classical ICA we were used super Gaussianlogistic 

distribution, basic difference among Gaussian and Super 

Gaussianis presence of heavy tails. In this method limitation 

is asymmetry. Second methodis based on division of 

gaussian density, but in this method limitation is heavy 

tails.Another method is generalized Gaussian density 

distribution. It is good in comparison tosuper gaussian 

Logistic model, for symmetric PDF. It is widely used model, 

but the limitation in this model is asymmetry. Next model 

we propose is division of generalized gaussiandensity 

distribution. In this model there is no any limitation for 

asymmetry. Vigyan abbreviated by DGGDD (divide 

generalized gaussian density distribution).  

A algorithm developed by amari et al. [13],but this 

algorithm developed independently by cardoso the name 

given by him relative gradient algorithm [3, 14].  

 

𝑊𝐾+1 =  𝑊𝐾 +  η  I −  φ  𝑦 𝑦𝑇 W𝐾        (2) 

 

Where η> 0 called learning rate. How we can choose it 

give in reference (4)  and φ  .   is vector of  score function. 

The optimal components are given by 

φ  𝑦𝑖 =  
𝑑

𝑑𝑦 𝑖
log 𝑃𝑖  𝑦𝑖 = − 

𝑃𝑖
′  𝑦𝑖 

𝑃𝑖 𝑦𝑖 
  (3) 

IV. SPLIT GAUSSIAN DISTRIBUTION 

The most famous distribution approach for skewness 

(asymmetric data) is SN distributionand for heavy tails is 

General Gaussian (GG) distribution. our approach is based 

on Divide generalized Gaussian Density Distribution 

(DGGDD),that will estimateasymmetric data. 

Normal distribution faces the limitation of symmetry, so 

we control the shape of PDF by calculatingthe deviation of 

sampleto the mean without modelling tails. 

The Gaussian (normal) PDF can be modify by describe 

the deviation from symmetry. Two different left and right 

variance in Gaussian PDFreplaces the variance. It will yield 

asymmetric split Gaussian model. 

𝑃𝑆𝑁 𝑦;𝑚, 𝜎2, 𝜏2 

=   
𝑑 . exp  −

1

2𝜎2
 𝑦 − 𝑚 2 , 𝑤𝑕𝑒𝑟𝑒 𝑦 ≤ 𝑚

    𝑑 . exp  −
1

2𝜎2𝜏2
 𝑦 −𝑚 2 , 𝑤𝑕𝑒𝑟𝑒 𝑦 > 𝑚

  

Where𝑑 =   
2

𝜋
𝜎−1 1 + 𝜏 −1 

Let γ1 and γ2are two different parameters that calulate the 

skewness and sharpness of a random variable and 

distribution.   

 γ1 = skew (y) = 
𝑚3  𝑦 

 𝑚2
3 𝑦 

 ; 

γ2 = kurt (y) = 
𝑚4  𝑦 

 𝑚2
2 𝑦 

 − 3 , 

where 

m2(y) =  Second order moment, 

m3(y) =  Third order moment, 

m4(y) =  Fourth order moment 

the values 

γ1 (skewness) = 0 ( for symmetric distribution) 

γ1 (skewness) = Non zero ( for asymmetric distribution) 

and 

γ2 (kurtosis) = +ve ( super - gaussian) 

γ2 (kurtosis) = 0 ( gaussian) 

γ2 (kurtosis) = -ve ( sub - gaussian) 

 

The relationship between γ1 and γ2 and freedom degree 

parameters in GG and DGGDD we can determined in next 

section 

Kurtosis another measure of non-gaussianity in terms of 

shape. The value of kurtosis is 3 for Gaussian, if the kurtosis 

is larger (smaller) than 3 then the sharpness of PDF shape is 

higher (lower) than the corresponding gaussian function. 

Generalized symmetric PDF is a good model for variable 

sharpness. The most famous model used generalized 

symmetric PDF model with variable sharpness is the 

generalized Gaussian [17, 18] 

𝑃𝐺𝐺 𝑦;𝑚, 𝛼 , 𝑑 =  
𝑑

2𝛼 Г  
1

𝑑
 

exp  − 
 𝑦 − 𝑚 𝑑

𝑎𝑑
  

For 

α, d  ∈  𝑅+ 𝑎𝑛𝑑 𝑚 ∈ 𝑅 where 

Г .   =  Gamma function, F(y)  =   𝑡𝑦−1𝑒−𝑡
∞

0

 𝑑𝑡 

d > 0 ( influence the model sharpness)  
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when we change the value of d (d>0), we get different 

sharpness in the family of distributions.  

when d = 2 (distribution PDF reduced to gaussian)  

d > 0 (distribution PDF becomes sub gaussian )  

that is γ2< 0 (not heavy tail)  

otherwise d < 2 (distribution PDF become super gaussian) 

that is γ2 > 0 (heavy tail).  

d can not be determined directly from data samples but 

we can obtain kurtosis (γ2). For this reason we  𝑦 must 

have the relationship between c and γ2 (kurtosis). From 

definition the second and fourth order moment can obtain 

𝑚2 =   𝑦2
∞

−∞

𝑃𝐺𝐺𝑑𝑦 =  
Г  

3

𝑑
 

γ2Г  
1

𝑑
 

 ,   𝑚4 =   𝑦4
∞

−∞

𝑃𝐺𝐺 𝑦 𝑑𝑦

=  
Г  

5

𝑑
 

γ4Г  
1

𝑑
 
 

So, γ =   
Г 

3

𝑑
 

𝑚Г 
1

𝑑
 
  , 

by using the definition of  γ2,          γ2 =
𝑚4

𝑚2
2 − 3 =

 
Г 

5

𝑑
 Г 

1

𝑑
 

Г2 
3

𝑑
 
− 3        (4) 

 

By the value of γ2 we can get value of d by above 

equation but due to definition of gamma function (Г .  ) it is  
not possible to represent d in terms of γ2 (kurtosis), 

analytically exact expression. So that we take 

approximation. Our best approximation was found by (least 

square method) LSM [19]. The LSM estimate the following 

result  

𝑑 =   
5

γ2−1.865
  − 0.12                                             (5) 

by above analysis the score function based on generalized 

gaussian density PDF in the algorithm equation (2) can be 

obtained from equation (3)32 

φ𝑖 ,𝐺𝐺 𝑦𝑖 = 𝑑 γ𝑑  𝑦𝑖 −  𝜇𝑦1 
𝑑−1 𝑠𝑔𝑛  𝑦𝑖 −  𝜇𝑦1 (6) 

V. DGGDD MODEL 

Symmetry is the main limitation of general gaussian 

model so left and right variance are replaced by the variance 

in the gaussian PDF to obtain the asymmetric gaussian 

model and we obtain asymmetric division generalized 

gaussian model 

Choi et. al. [16] given the idea of ICA algorithm when the 

score function is obtained from DGGD model. This function 

is controlled by d. The limitation of GGDD model is it 

symmetry but DGGDD model is based on asymmetry 

DGGDD. This model is based on two 2
nd

order parameters 

𝜎𝑙
2, 𝜎𝑟

2 are called left and right variance they are represented 

and given by 

𝜎𝑙
2 =

1

𝑁𝑙 − 1
  𝑦𝑖 − 𝑚𝑦  

2

𝑁𝑙

𝑖=1, 𝑦𝑖<𝑚𝑦

  𝑎𝑛𝑑  

𝜎𝑟
2 =

1

𝑁𝑟 − 1
  𝑦𝑖 − 𝑚𝑦  

2

𝑁𝑟

𝑖=1, 𝑦𝑖>𝑚𝑦

 

Where 𝑚𝑦  = estimated mode (that must not conside with 

mean in asymmetric distribution 

𝑁𝑙 𝑁𝑟 

= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦𝑖  𝑙𝑒𝑠𝑠 𝑡𝑕𝑎𝑛 𝑚𝑦   (𝑜𝑟 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡𝑕𝑎𝑛 𝑚𝑦 ) 

So now replace the variance of General Gaussian 

Distribution PDF with 𝜎𝑙and 𝜎𝑟  ,we can get DGGDD model. 

𝑃𝐷𝐺𝐺𝐷𝐷  𝑦;𝑚, 𝜎𝑙  , 𝜎𝑟 , 𝑑 =

  

𝑐γ

Г 
1

𝑑
 
 . exp  − γ𝑙

𝑑  −  𝑦 − 𝑚𝑦  
𝑑
 , 𝑤𝑕𝑒𝑟𝑒 𝑦 < 𝑚𝑦

𝑐γ

Г 
1

𝑑
 
 . exp  − γ𝑟

𝑑  −  𝑦 − 𝑚𝑦  
𝑑
 , 𝑤𝑕𝑒𝑟𝑒 𝑦 ≥  𝑚𝑦

 7) 

Where γ =  
1

𝜎𝑙+ 𝜎𝑟
 
Г 

3

𝑑
 

Г 
1

𝑑
 
 , γ𝑙 =  

1

𝜎𝑙
 
Г 

3

𝑑
 

Г 
1

𝑑
 
 , γ𝑟 =

 
1

𝜎𝑟
 
Г 

3

𝑑
 

Г 
1

𝑑
 

  𝑎𝑛𝑑 𝑚𝑦 = 𝑚𝑜𝑑𝑒 

from definition DGGDD model satisfies following 

properties of density function. 

𝑃𝐷𝐺𝐺𝐷𝐷  𝑦;𝑚, 𝜎𝑙  , 𝜎𝑟 , 𝑑 > 0, 𝑃𝐷𝐺𝐺𝐷𝐷  𝑦 
∞

−∞

 𝑑𝑦 = 1 

same time PDGGDD is continuous when y = 𝑚𝑦   from 

above 

CASE 1: when 𝜎𝑙
2 =  𝜎𝑟

2the PDF is same as GGD model 

(that is symmetric distribution). 𝜎𝑙
2 =  𝜎𝑟

2 and γ2 (Kurtosis) 

= 0  then DGGDD model consider with Gaussian model and 

if    γ2 (kurtosis) > 0 it consider with super gaussian  model 

otherwise γ2 (kurtosis) < 0 it consider with sub gaussian  

PDF.  

CASE 2: when 𝜎𝑙
2 ≠ 𝜎𝑟

2 and γ2 = 0 then we get general 

asymmetric gaussian. From the definition second and fourth 

order moment of DGGDD can be obtained. 

𝑚2 =   𝜎𝑟 − 𝜎𝑙 
2  1 − 

 Г 
2

𝑑
  

2

Г 
1

𝑑
 Г 

3

𝑑
 
 + 𝜎𝑙𝜎𝑟                (8) 

𝑚4 =  
Г 

5

𝑑
 Г 𝑑 

 Г 
3

𝑑
  

2  𝜎𝑙
4 − 𝜎𝑟

3𝜎𝑙 +  𝜎𝑟
2𝜎𝑙

2 − 𝜎𝑟𝜎𝑙
3 +  𝜎𝑙

4 −

4  
Г 

2

𝑑
 Г 4 

 Г 
3

𝑑
  

2  𝜎𝑟
2 +  𝜎𝑙

2  𝜎𝑟 − 𝜎𝑙 
2 + 6 

 Г 
2

𝑑
  

2

Г 
3

𝑑
 Г 

1

𝑑
 
 𝜎𝑟

2 − 𝜎𝑟𝜎𝑙 +

 𝜎𝑙2𝜎𝑟− 𝜎𝑙2−3 Г2𝑑2Г3𝑑Г1𝑑2𝜎𝑟− 𝜎𝑙4       (9) 

Relationship between γ2 (kurtosis) and d can be derived 

from equation (4), equation (8) and equation (9) from 

equation (3) we obtain score function for DGGDD. 

φ𝑖 ,𝐷𝐺𝐺𝐷𝐷  𝑦𝑖 =  
− 𝑑 γ𝑙

𝑑  −  𝑦𝑖 − 𝑚𝑦𝑖  
𝑑−1

𝑦𝑖 < 𝑚𝑦𝑖

𝑑 γ𝑟 
𝑑  𝑦𝑖 − 𝑚𝑦𝑖  

𝑑−1
      𝑦𝑖 ≥ 𝑚𝑦𝑖

                                                  

(10) 

VI. MULTIDIMENSIONAL DIVIDE 

GENERALIZED GAUSSIAN DISTRIBUTION 

The density of multidimensional divide generalized 

gaussian distribution is given by 

𝑃𝐷𝐺𝐺𝐷𝐷  𝑦;𝑚, 𝜎𝑙  , 𝜎𝑟 , 𝑑 =   det 𝑊   𝐷𝐺𝐺𝑑
𝑖=1  𝜔𝑗

𝑇 𝑦 −

𝑚 ;0, 𝜎𝑙𝑗, 𝜎𝑟𝑗, 𝑑,                    (11) 
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Where  

𝑚 =   𝑚1 , … . , 𝑚𝑑 
𝑇 , 𝜎𝑙 =   𝜎𝑙1 , … , 𝜎𝑙𝑑  ,  𝜎𝑟  

=   𝜎𝑟1 , … , 𝜎𝑟𝑑    𝑎𝑛𝑑  
               𝜔𝑗  𝑖𝑠 𝑖

− 𝑡𝑕 𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝑛𝑜𝑛 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 𝑊 𝑎𝑛𝑑 𝑑 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

VII. PROPOSED ALGORITHM 

1. Calculate output F(y) by observation f(y) and matrix W  

2. Approximate the skewness and kurtosis of mixed 

image F(y)  

3. When value of skewness = 0 or very close to zero  

then if 𝜎𝑙
2 = 𝜎𝑟

2 

find c from equation (5) using equation (4) according the 

value 𝛾2  

else if  𝛾1 (𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠)> 0.1  

find c from the equation (5) using equation (4), equation 

(8) and equation (9) according the value 𝛾2 .  

4. Calculate the score function by equation (6) or equation 

(10).  

5. updating W using equation (2)  

If  𝑊𝐾+1 − 𝑊𝐾  ≥  𝜖 , K = K + 1  

then go to step 1 otherwise  

Exit 

VIII. EXPERIMENTS AND RESULTS 

For comparison our method with classical once we use 

Tuskers Congress Coefficient [61] defined by 

𝐶𝑟 𝑆𝑖 , 𝑆𝑖  =  
 𝑆𝑖

𝑗
𝑆𝑖
𝑗𝑑

𝑖=1

  𝑆𝑖
𝑗𝑑

𝑗=1  𝑆𝑖
−𝑗𝑑

𝑗=1

 

Where -1 ≤ 𝐶𝑟  ≤ +1 . It is used to compare the similarity 

of extracted factor between different sample. Mostly 

congruence coefficient = 0.9 (high degree of factor 

similarity) while congruence coefficient = 0.95 or higher 

(factor are virtually identical) 

8.1Computation Time :  

ICADGGDD gives comparable result with NGPP if we 

increase the number of component to 2 to 40 fastICA, 

infomaxand JADE are effective in respect to computation 

time but do not solve image separation 

8.2 Images Separation :  

ICADGGDD method essentially gives good result in 

comparison to ICAGG, fastICA, infomax, JADE. 

 

Table I : Mixing and Separation of two images 

 

IX. CONCLUSION 

Our approach based on data density by product of 

division generalized gaussian density distribution which is 

suitable for both skewness and heavy tail model. It give the 

better result in image separation but worst computational 

time in comparison with classical algorithms. 

we verify our approach on images only. This algorithm 

better recover original images. We used the skewed and 

heavy tail data only. 
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