The Reasons for The Mass Mortality of Siberian Roe Deer in The Wintering Period in Western Siberia

V. B. Yermolik, Yu. D. Schmidt, P. N. Smirnov

Abstract: The article presents the analysis of the limiting environmental factors that determine the dynamics of the roe deer population in Western Siberia. The regularities of the extreme effect of winter anomalies, in particular, high snow, on the organisms of Siberian roe deer have been determined. The structure of winter nutrition and behavioral reactions of roe deer has been studied in terms of adaptation and maintaining the homeostasis in the conditions of fodder shortage and overcoming the resistance of the snow cover. The reasons for the mass mortality of roe deer in the winter have been found. To solve this problem, post-mortem examinations were made of the roe deer that died from starvation in the wild. Studies have shown that roe deer feeding on raw growing browse in the wintering period results in injuries of the digestive system. This browse has low nutritional value and is unable to ensure the energy balance in the organism of roe deer. It has been found that this process is accompanied by degeneration of the tissues and organs with disruption of their functions, resulting in nutritional depletion, which causes mass mortality of roe deer in the wild.

Keywords: Siberian roe deer, population, high snow, adaptation, homeostasis, pathoanatomical examination, feed injuries, the collapse of the digestive system, alimentary depletion.

I. INTRODUCTION

Siberian roe deer in Western Siberia is the most representative species of wild cloven-hoofed animals. Maintaining the structure of the populations and the number of species of the deer family at the optimal level directly depends on the quality and the year-round availability of the fodder base.

The seasons have different effects on the behavioral patterns of roe deer and play an important role in their life cycle. In the summer, they find enough food at most feeding points in their habitats [1].

The summer diet of roe deer is quite diversified and consists of 500 plant species. Their everyday preferences are very diverse. These are marsh-and-meadow herbs, in particular, slough grass, marsh rosemary, common horsetail, leaves of wintergreen, pigweed, and wild vetch. They readily eat cranberry, blueberry, and bilberry leaves and berries. In the forest-steppe zone, roe deer eat burnet, cow parsnip, rosebay, sorrel, calla, acorus, and other plants.

With the onset of the winter, the situation with providing forage resources for roe deer changes dramatically. In Western Siberia, the average duration of the period with stable snow cover is 160 to 180 days. The high-snow season virtually deprives roe deer of the ability to freely move and thus get natural forage under the deep snow. At this period, the feeding opportunities are much worse for roe deer, and they mainly feed on the browse from the lower layer of the trees – shoots of various species of willow, as well as birch and aspen.

The problems of survival, preservation, and changing the population of wild animals, depending on their habitat conditions and on the extreme effect of seasonal factors, were discussed in the works of the following Russian biologists: A. P. Semenov-Tyan-Shansky [2-4]; P. B. Jurgenson [5, 6]; A. A. Nasimovich [7-9]; A. N. Formozov [10]; S. V. Kirikov [11]; V. E. Sokolov, A. Danilkin [12], [13]; V. A. Ostanin, V. A. Strekalovskikh [14], A. V. Argunov [15], O. A. Grosheva [16], B. V. Koblechuk, I. O. Lysenko [17], A. A. Krivoshapkin [18], Y. V. Labutin, M. V. Popov [19], I. A. Lvov [20], P. A. Manteifel [21], N. I. Maltsev [22, 23], N. I. Prostakov [24], and others.

In the winter, during high snow, roe deer are the most vulnerable species in the deer family. The height of the snow cover from 50 cm and more than one meter is a kind of "survival threshold", where roe deer can in rare cases without human help safely make it to the end of the wintering cycle [13, 25, 26]. The onset of each new winter with plenty of snowfalls naturally has biologically serious consequences, i.e., mass death of the animals from starvation. In particular, on the territory of the Novosibirsk region, the winter of 2016 – 2017 by its extreme parameters exceeded all previous winter periods. The height of the snow cover at the lowland parts in separate districts of the region reached one and a half meters, and along the rivers and the contour of the forest, the snow level reached the absolutely abnormal value of over two meters. As a result of the ensuing starvation, the lack of access to natural feed, and the absence of skilled biotechnical support, the population of roe deer in this region suffered serious losses. According to the data of the West-Siberian branch of the All-Russian Research Institute of Hunting and Farming n.a. Prof. B. M. Zhitkov of the Russian Academy of...
Agricultural Sciences, which monitored the wintering cycle and its impact on the populations of the cloven-hoofed animals, the roe deer mass mortality in the region in March 2017 amounted to over 5,000 animals. Concerning this fact, the authors performed research for determining the reason for the mass mortality of the animals.

II. METHODS

A. General Description

To solve the tasks set in the research, pathoanatomical examinations of the bodies of the roe deer starved to death found in the wild on the territory of the Novosibirsk region were performed. The biological material for the subsequent examination was sampled randomly in the format of cluster sampling.

The studies were performed at the base of:
• the office of the Federal Veterinary and Phyto sanitary Monitoring Service (Rosselkhoznadzor) for the Novosibirsk region, Reference Center, Laboratory of Histomorphology (Serebrennikovsky Str., 5);
• the FSBEI HE Novosibirsk State Agrarian University, Faculty of Veterinary Medicine, Department of Surgery and Internal Noncontagious Diseases, the laboratory-and-clinical building (Dobrolyubov Str. 160).

B. Algorithm

To achieve the goal, the method of complex pathoanatomical examination of the internal organs of roe deer with detailed description and morphometry of the discovered changes was used (Fig. 1).

Opening of the abdominal cavity revealed the total serosanguineous edema of the abdominal cavity organs (Fig. 4) and a pronounced brown atrophy of the liver.

Fig. 2: Appearance of a dead roe deer

Fig. 3: Roe deer skin cover alopecia

Fig. 4: Serosanguineous edema of the abdominal organs and pronounced brown atrophy of the liver

Fig. 1: Expert autopsy of roe deer, and taking samples for clinical and morphological studies.

External examination of the dead roe deer showed a pronounced exhaustion manifested in the bulging of pelvic bones, ribs, spinous processes of vertebrae; the skin was dry, palpation did not reveal any subcutaneous fat (Figure 2).
III. RESULTS

Examination of the cardiovascular system of Siberian roe deer showed that the macroscopic characteristic of the heart confirmed the high biological load on the animal organism in the absence of metabolic support for the overall energy status on the background of systemic starvation. For instance, the examination revealed the presence of systemic myocardial infarctions, floccular degeneration, acute inflammation of the myocardium, and myocarditis with focal infarction (Fig. 5, 6).

An inflammatory process was noted on the endocardium, which had resulted in changes in the endocardium structure (Fig. 8).

Examination of the cross-section of the heart revealed tonogenic dilatation, and a red thrombus in the heart cavity (Fig. 7).

Morphological changes of the heart, the presence of degenerative and dystrophic processes, and myocardium atrophy were found (Fig. 10).

Fibrinous depositions were found on the endocardium (Fig. 9).

Fig. 5: Myocardial infarctions

Fig. 6: Myocarditis with focal infarction

Fig. 7: heart cross-section – tonogenic dilatation

Fig. 8: Valve endocarditis

Fig. 9: Fibrinous depositions on the endocardium

Fig. 10: Myocardium atrophy
The examination of the respiratory system revealed hemorrhagic inflammation and pulmonary edema. A pathological increase in the volume of the extravascular fluid in the lungs was observed. The tissues had a firm texture and a deep red color; bloody fluid drained from the surface (Fig. 11).

Examination of the spleen revealed the decreased volume of this organ, which was characterized by brown atrophy, as well as systemic degenerative processes, which were evidence of an extreme degree of cachexy of the examined roe deer (Fig. 12).

The expert evaluation of the kidneys showed the complete absence of the adipose capsule; the kidneys were compacted, which was typical for atrophy and nephrosclerosis, the effect of the toxic kidney was observed (Fig. 13, 14).

The examination practically revealed the collapse of the digestive system in the dead roe deer, whereby the atrophy of the omasum and the hemorrhagic inflammation of the mucous membrane of the abomasum were observed with the decomposition of the tissues as a result of the activation of its own enzymes (autolysis) (Fig. 16).
The mucous membranes of the abomasum and the small intestine were characterized by pronounced necrolysis and acute serosanguineous edema as a manifestation of the terminal stage of the cachetic process in the organism of the animal (Fig. 17, 18, 19).

ACKNOWLEDGMENT

The authors are grateful to the office of the Federal Veterinary and Phyto-sanitary Monitoring Service (Rosselkhoznadzor) for the Novosibirsk region and to the FSBEI HE Novosibirsk State Agrarian University, Faculty of Veterinary Medicine, Department of Surgery and Internal Noncontagious Diseases for their professional assistance in the pathoanatomical examinations.

REFERENCES

2. A.P. Semenov-Tian-Shansky “Nakanune razgroma poslednikh rezervov prirody” [On the eve of the defeat of the last natural reserves] Novoe Vremya, 10 (23), 1911, p. 688.
The Reasons for The Mass Mortality of Siberian Roe Deer in The Wintering Period in Western Siberia


13. O.A. Grosheva “Sokhranenie biologicheskogo raznoobraziya v zapovednikakh stepnoi zony Rossii” [Preservation of the biological diversity in the wildlife reserves in the steppe zone of Russia], News of the Orenburg State Agricultural University, 3 (15-1), 2007, pp. 25 – 27.


15. A.A. Krivoshapkin “Chislenost sibirskoi kosuli (Capreolus Pall.) v Tsentralnoi Yakutii i faktory, opredelyayushchie ee dinamiku” [The population of Siberian roe deer (Capreolus Pall.) in Central Yakutia and the factors that determine its dynamics], News of the YaSU, 3 (2), 2006. pp. 56 – 62.


18. P.A. Manteifel “O rekonstruktsii okhotnichie-promyslovoi fauny mlekopitayushchikh SSSR” [On the reconstruction of the mammals hunting and commercial fauna of the USSR], Socialist reconstruction and science, 2, 1934.


20. N.I. Maltsev “Ekologicheskie osnovy rationalnogo izpolzovaniya resursov sibirskoi kosuli Srednei Sibiri” [Ecological bases for the rational use of natural resources and the Siberian roe deer in Central Siberia], Abstract of Dissertation...Candidate of Biological Sciences 03.00.32 / Nikolai Ivanovich Maltsev, Krasnoyarsk, 2004, p.30.

