Modified Variable Step Size Affine Algorithm for Grid Integrated PV System

Byomakesh Dash, Satish Choudhury, Renu Sharma

Abstract: This paper proposes a Modified Variable Step Size Affine (MVSA) algorithm for a single stage grid integrated photovoltaic (GIPV) system. Integration of photovoltaic (PV) system to utility grid encounters many control issues like nonlinearities, disturbances and unbalanced loading. The proposed algorithm not only improves the overall performance of the system despite all the adverse conditions but also improves the power quality as per IEEE-519 standard. The proposed algorithm is developed to eliminate harmonics caused by nonlinear loads, to transfer active power from PV source to load as well as to grid under unity power factor condition, to maintain constant voltage profile at the point of common coupling and to provide a controlled reference signal to the hysteresis controller so as to produce suitable gate pulse to voltage source converter (VSC). In this paper, a PI control is used to maintain dc link voltage and Perturb & Observe (P&O) method is used to extract optimum power from PV source irrespective of all disturbances in the utility grid. The system under consideration is modelled and simulated using MATLAB/Simulink software. Comparing the performances of the said variable step size control algorithm with that of fixed step size algorithm like Fixed Step Size Affine (FSA) Projection Algorithm and Least Mean Fourth (LMF), it is observed that the mean square error in MVSA is less as compared to FSA and LMF.

Keywords: Fixed Step Size Affine (FSA) Projection algorithm, Modified Variable Step Size affine (MVSA) algorithm, Photovoltaic (PV), Perturb& Observe (P&O), Total Harmonics Distortion (THD)

I. INTRODUCTION

The major challenges in 21st century is global warming, changing climate caused by greenhouse effect and effective use of natural resources which are in declining state. This forces the world community to think for some alternative form of clean energy for the future generation. The best way to achieve this is to adopt solar energy as the alternative to the conventional energy which is clean, secure and abundantly available. Again the cost of photovoltaic module has reduced by 60% from 2011-2013 and will further reduce by 40% by 2020[1]. This reduced cost and environment friendly nature of photo voltaic system has attracted many researchers to work in the direction of integrating photovoltaic sources to utility grid, which leads to new and innovative integrating process.

Power electronics conversion plays a vital role for integrating photovoltaic sources to utility grid and to improve its efficiency. It adopts the system continuously and draw maximum power from photovoltaic sources irrespective of weather and load conditions. Normally this task is performed by MPPT techniques, and there is substantial literature on MPPT techniques in [2]-[9]. The literature reveals broad work has been done to model sun powered photovoltaic systems [2] and to extract maximum power from it such as Perturb and observe (P&O) [3], INC [4], variable step size incremental resistance [5], artificial bee colony algorithm [6] and many more intelligent control techniques such as reinforcement learning (RL), fuzzy logic, neural network and genetic algorithm [7]-[9].

Integration of photovoltaic systems to utility grid can be realized in two stages of power conversion. First one is dc/dc converter with MPPT control and second one is dc/ac inverter. Literature reveals that single stage power conversion is more efficient as compared to two stage conversion [10]. The factors to be considered while integrating solar photovoltaic systems to grid are degraded power quality, performance and stability under load unbalancing, harmonics and reliability. Hence the power electronics converter require a robust control logic that work satisfactorily under various issues mentioned above and disturbances at the load as well as grid end.

Signal processing based many adaptive algorithms have been cited in the literature, such as recursive least square [11], DFT, droop control [12], LMF [13], Least mean square (LMS) [14], DNMLS, modified VSS-LMS, variable leaky LMS [15], along with the conventional techniques such as SRF, ILST [16], IRPT, enhanced phase locked loop etc. Main objective of these algorithms are to reject the harmonics accurately and to get desired response in adverse conditions. An affine projection algorithm [17] is proposed in the literature that is based on affine subspace projections. As step size parameters govern the convergence rate and stability of classical affine projection algorithm (APA), numerous variable step size affine projection algorithms were developed and proposed in the literature [18]-[21]. Main feature of these algorithms are fast convergence rate, low steady state mean square error and low computational complexity.

In this paper, a modified variable step size affine (MVSA) is proposed in grid synchronization process to estimate the active and reactive current components of three phase nonlinear loads. These active components are...
used to generate reference grid currents. In the proposed algorithm, a step size scalar is applied to update the step size, so as to improve its behaviour under steady as well as dynamic conditions. The grid integrated photovoltaic system with the proposed algorithm is designed, modelled and simulated under nonlinear loads in unity power factor (UPF) mode under various dynamic conditions in MATLAB/SIMULINK environment and is compared with the conventional fixed step methods to evaluate its effectiveness.

This paper contributes in modification of control algorithm for generating reference grid current to maintain the performance parameters at its set value. This work basically modify the Affine algorithm by using an exponential step size scalar function along with a variable step size. The modified step size helps to reduce mean square error and oscillation in steady state and transient state under nonlinear loading condition. The step size scalar improves the convergence rate of MVSA based algorithm as compared to FSA and LMF algorithm.

The rest of the paper is organised as follows: Section II describes the modelling and design of photovoltaic system. Section III describes the control algorithm. Section IV describes the result analysis using MATLAB/SIMULINK. Section V conclude this paper.

II. MODELLING AND DESIGN OF GRID INTEGRATED PV SYSTEM

The configuration of the grid connected PV system is shown in Fig.1. It comprises of a PV array, DC link capacitor (CDC), Interfacing Voltage source converter (VSC), R-C ripple filter, interfacing inductors (L), and nonlinear load. Interfacing inductor compensates the harmonics present in the grid current, whereas R-C ripple filter mitigates the switching ripple at the point of inter section. Power flow from source to grid as well as to load is governed by the single stage PV topology. The nonlinear load is modelled by an uncontrolled diode bridge rectifier with an R-L load. Maximum power from the PV source is extracted using P&O method.

A. Modelling of Solar Photovoltaic Array and determination of System Parameters.

Villava et al. [2] describe in detail the modelling of PV array composed of several basic modules connected in series and parallel. A PV module consists of number of cells in it. A number of PV modules connected in series and parallel to form a PV array.

The PV system designed here is of 50 kW connected to a 415 V, 50 Hz, three phase system. The number of series and parallel connected PV modules required to meet the design criterion are calculated as follows:

\[N_s = \frac{V_{DC}}{V_{mp}} = \frac{700}{26.3} \approx 26.7 \approx 27 \]
\[N_p = \frac{P_{max}}{V_{DC} I_{mp}} = \frac{50000}{700 \times 7.61} = 9.386 \approx 10 \]

The value of DC bus voltage is calculated as

\[V_{DC} = \frac{2V_{Lm}}{\sqrt{3}k} = \frac{2\sqrt{3} \times 415}{\sqrt{3} \times 1} = 677.69 \]

where \(V_{Lm} \) is the peak line voltage of the grid and \(k \) is the modulation index. The value of DC bus voltage is taken as 700 volt.

The value of interfacing inductance is calculated as [22]

\[L = \sqrt{\frac{mV_{DC}^2}{12h_0 f_{SW} \Delta I}} = \frac{\sqrt{3} \times 700}{12 \times 1.2 \times 10000 \times 0.03 \times 71.43} = 3.9mH \approx 4mH \]

Where \(h_0 \) is the overloading factor, \(f_{SW} \) is the switching frequency, and \(\Delta I \) is the percent (3%) of ripple current. The voltage source converter DC link capacitance is computed as

\[C_{DC} = \frac{P_{DC}}{2V_{DC} \omega V_{DCrip}} = \frac{50000}{2 \times 700 \times 314 \times 0.02 \times 700} \]
\[v_{DCrip} = 8124.3 \mu F \]
(5)

Where \(v_{DCrip} \) is percentage of ripple voltage and \(\omega \) is the angular frequency. The ripple filter is designed with capacitance \(C_{eff} = 10 \mu F \) and resistance \(R_f = 5 \Omega \) respectively [22].

III. CONTROL ALGORITHM

Integration of a PV system to utility grid can be realized in two stages. First one is MPPT algorithm, which helps to track maximum power from photovoltaic sources and gives reference voltage so as to maintain the dc bus voltage at its desired value. The second one is the control algorithm for VSC which one is responsible for generating gate pulses for the controlled solid-state switches of VSC.

The reference voltage thus produced in stage one is compared with the actual voltage obtained across the dc link capacitor and the error is fed to PI controller to produce the dc power loss component. The peak voltage is determined from in phase and quadrature component of the unit templates. Then the active and reactive weight components are estimated using MVSA algorithm as shown in fig.2 using the dc and ac loss components followed by the calculation of resultant weight. The resultant weight thus calculated is then utilized to produce harmonic free reference grid currents and subsequently they produce suitable pulse signal for VSC. These estimated weights are used to control the current flowing in the system so as to maintain the power flow from source end to utility grid and load. Further the proposed algorithm is well capable to, minimize the effect of harmonics in the load current, noise, load unbalancing and transfer power under unity power factor condition.

A. Estimation of Unit Templates and Amplitudes of Terminal Voltage.

Phase voltages \((v_R, v_Y, v_B) \) can be computed from line voltages \((v_{RY}, v_{YB}) \) as per the following equations [23]

\[
\begin{align*}
 v_R &= \frac{2}{3} v_{RY} + \frac{1}{3} v_{YB} \\
 v_Y &= -\frac{1}{3} v_{RY} + \frac{1}{3} v_{YB} \\
 v_B &= -\frac{1}{3} v_{RY} - \frac{1}{3} v_{YB}
\end{align*}
\]
(6)

Peak value of terminal voltage can be computed as follows

\[
V_p = \frac{2}{3} \sqrt{\sum_{x=R,Y,B} v_x^2}
\]
(7)

The in-phase and quadrature unit templates are calculated as [24]

\[
u_{ax} = \frac{v_x}{V_p}
\]
(8)

where \(x \) represents R, Y and B phases and \(u_{ax} \) is in-phase active unit template of respective phases.

\[
u_{br} = \frac{1}{\sqrt{3}} (-u_{aY} + u_{ab}),
\u_{by} = \frac{1}{2\sqrt{3}} (3u_{aY} + u_{aY} - u_{ab})
\u_{bb} = \frac{1}{2\sqrt{3}} (-3u_{aY} + u_{aY} - u_{ab})
\]
(9)

where \(u_{br}, u_{by}, u_{bb} \) represents quadrature unit template.

B. Estimation of AC and DC Loss Component

The difference between reference voltage provided by MPPT control \(V_{DCref} \) and voltage across dc link capacitor \(V_{DC} \) is the dc voltage error and is computed as follows

\[
V_{DE}(m) = V_{DCref}(m) - V_{DC}(m)
\]
(10)

The dc loss component is computed as

\[
\delta_{ca}(m) = k_p \left(1 + \frac{k_i}{k_p s} \right) V_{DE}(m)
\]
(11)

where \(k_p \) and \(k_i \) are proportional and integral gain. Fig.3 shows the block diagram of DC voltage controller. Where gain of the foreword path \(G(s) \) and feedback path gain \(H(s) \) are represented as

\[
G(s) = \frac{sk_p + k_i}{s^2 C_{DC}}, H(s) = \frac{\omega_c}{s + \omega_c}
\]
(12)

Where \(\omega_c \) is the cut off frequency (10Hz) of the low pass filter in the feedback path.

The ac voltage error is calculated by subtracting peak value of terminal voltage \(V_p \) from its reference value \(V_{pref} \).

\[
V_{pe}(m) = V_{ref}(m) - V_p(m)
\]
(13)

The ac loss component is computed as

\[
\delta_{ca}(m) = k_p \left(1 + \frac{k_i}{k_p s} \right) V_{pe}(m)
\]
(14)

To show the effect of PV system, \(\delta_{pv}(m) \) is added to the system and is computed as

\[
\delta_{pv}(m) = \frac{2P_{pv}(m)}{3V_p}
\]
(15)

where \(P_{pv} \) is the output power of PV system.

C. Estimation of Active and Reactive Component of Load Current

The respective weight components are updated as follows [17]

\[
\delta_{ax}(m + 1) = \delta_{ax}(m) + \mu_{ax}(m) u_{ax} \left(u_{ax}^T u_{ax} \right)^{-1} e_{ax}(m)
\]
(16)

where

\[
\mu_{ax}(m) = s_x(m) \mu_{x}(m)
\]
(17)
Here \(x \) represents R, Y and B phases respectively, \(\mu_x(m) \) is the variable step size parameter, \(s_x(m) \) is the variable step size scalar and \(\hat{e}_{ax}(m) \) is the estimated error. The variable step size parameter \(\mu_x(m) \) can be chosen appropriately to get desired result and is represented as: [25]

\[
\mu_x(m + 1) = \lambda \mu_x(m) + \tau \left| \frac{\hat{e}_{ax}(m)}{\left(\frac{\hat{e}_{ax}(m)}{m}\right)^2} \right| \hat{e}_{ax}(m)
\]

(18)

\[
p_{ax}(m) = \sigma p_{ax}(m - 1) + (1 - \sigma) u_{ax}(m) e_{ax}(m)
\]

(19)

Where, \(0 < \lambda < 1 \text{ and } \tau > 0 \) are tuning parameters and \(0 < \sigma < 1 \) is a smoothing factor. Step size scalar \(s_x(m) \) accomplish the role of scaling the step size \(\mu_x(m) \) so that the system will function properly due to any disturbance and noise and is represented as

\[
s_x(m) = \frac{1}{1 + \beta C_x(m)}
\]

(20)

Where \(\beta > 0 \).

\[
C_x(m) = e_{ax}^T \left(\hat{e}_{ax}^T \hat{u}_{ax} \right)^{-1} e_{ax}(m)
\]

(21)

The estimated error is calculated as

\[
\hat{e}_{ax}(m) = i_{Lx}(m) - \hat{u}_{ax}(m) \delta_{ax}(m)
\]

(22)

\[
\hat{i}_{Lx}(m) = i_{Lx}(m) - \hat{a}_{Lx}(m - 1)
\]

(23)

\[
\hat{u}_{ax}(m) = u_{ax}(m) - ca_{ax}(m - 1)
\]

(24)

where \(x \) represents phases R, Y and B respectively, \(i_{Lx}(m) \) is the load current of phases \(x \) and \(u_{ax}(m) \) is the in phase unit template of respective phases. Similarly the estimated reactive weight of phases R, Y and B are updated as

\[
\delta_{bx}(m + 1) = \delta_{bx}(m) + \mu_{bx}(m) \hat{u}_{bx}(m) e_{bx}(m)
\]

(25)

\[
\hat{p}_{ax}(m) = \sigma p_{ax}(m - 1) + (1 - \sigma) u_{ax}(m) e_{ax}(m)
\]

(26)

\[
\hat{p}_{bx}(m) = \sigma p_{bx}(m - 1) + (1 - \sigma) u_{bx}(m) e_{bx}(m)
\]

(27)

\[
C_x(m) = e_{bx}^T \left(\hat{u}_{bx}^T \hat{u}_{bx} \right)^{-1} e_{bx}(m)
\]

(28)

\[
e_{bx}(m) = i_{Lx}(m) - \hat{u}_{bx}(m) \delta_{bx}(m)
\]

(29)

\[
\hat{i}_{Lx}(m) = i_{Lx}(m) - \hat{a}_{Lx}(m - 1)
\]

(30)

\[
\hat{u}_{bx}(m) = u_{bx}(m) - ca_{bx}(m - 1)
\]

(31)

\[
\hat{u}_{bx}(m) = u_{bx}(m) - ca_{bx}(m - 1)
\]

(32)

Fig. 2 MVSA algorithm control structure
D. Calculation of Reference Three Phase Grid Current

Average and resultant active weights are computed as follows

$$\delta_{ava} = \frac{1}{3} \sum_{x=R,Y,B} \delta_{ax}$$ \hspace{1cm} (33)

$$\delta_a = \delta_{ava} + \delta_{ca} - \delta_{pv}$$ \hspace{1cm} (34)

where δ_{ava} is the average active weight, δ_a is the resultant active weight, and δ_{pv} is the feed forward term.

Similarly average and resultant reactive weights are computed as

$$\delta_{avb} = \frac{1}{3} \sum_{x=R,Y,B} \delta_{bx}$$ \hspace{1cm} (35)

$$\delta_b = \delta_{cb} - \delta_{avb}$$ \hspace{1cm} (36)

where x represents R, Y and B phases respectively.

The resultant active weight (δ_a) and reactive weight (δ_b) determine the active (i_{ax}^*) and reactive (i_{bx}^*) reference grid currents.

$$i_{ax}^* = \delta_a u_{ax}$$ \hspace{1cm} (37)

$$i_{bx}^* = \delta_b u_{bx}$$ \hspace{1cm} (38)

where x represents R, Y and B phases respectively.

Then the total reference grid currents are computed as

$$i_x^* = i_{ax}^* + i_{bx}^*$$ \hspace{1cm} (39)

Here x represents R, Y and B phases and i_x^* represents reference grid currents of respective phases.

After generating the reference grid currents (i_R^*, i_Y^*, i_B^*) they are compared with the actual grid currents (i_R, i_Y, i_B) sensed at the point of common coupling. The error is then passed through a hysteresis band of width 0.01 for generating the gate pulses.

IV. SIMULATION RESULTS

Modelling and simulation of 50KW PV integrated system is carried out using MVSAl algorithm in MATLAB/SIMULINK environment. Performance of the system is studied under various dynamic conditions. Parameters of the system under study are given in appendix.

A. Performance Analysis under Steady State

Fig.5 depicts the behavior of the system under load unbalancing. Load unbalancing is realized during the period 0.7 to 0.9 sec. At 0.7 sec. phase R is disconnected, thus making the system unbalanced and again it is reconnected at 0.9 second. During this period R phase load current i_{LR} becomes zero. Grid voltage (v_{RYB}) and grid current (i_{RYB}) remain sinusoidal during this period. Grid current track it’s reference value properly. DC link voltage (V_{DC}) maintain its value constant as defined by MPPT control. PV power (P_{PV}) and current (I_{PV}) maintain their values constant during this period. Active power fed to the grid (P_g) increases and reactive power (Q_g) remain zero which depicts the UPF operation. The active weights ($\delta_{ava}, \delta_{ca}$) regain their values after the disturbance and the weight δ_{pv} remain constant.
C. Performance Analysis under Variable irradiation

Fig. 7 depicts the behavior of the system under variable irradiation condition. Irradiation (G) is changed from 1000W/m2 to 500 W/m2 at 0.4 sec. There is no variation in grid voltage (V_{RBY}) and load current (i_{LR}) is observed. With decrease in irradiation, current (I_{PV}) decreases. Hence decrease in PV power (P_{PV}) is observed during this period. As PV power is reduced due to decrease in irradiation, power supplied to the grid (P_g) is reduced but the load power (P_L) remain constant.
D. Comparison between MVSA and Fixed step size (FSA) algorithm

![Graph showing comparison between MVSA, FSA, and LMF algorithms.]

Fig. 8 shows the simulation result of MVSA, fixed step size affine (FSA) and LMF algorithm based PV integrated system.

The simulated result describes the performance of the system through the variation of in Fig. 8. Response of average active weight component and estimated average active weight . In VSS algorithm step size is estimated at each instant, whereas in FSS algorithm it is fixed. From figure 8 it is observed that oscillation during unbalance period is almost zero in the proposed MVSA algorithm. In FSA algorithm for higher value of step size oscillation is more but for lower step size oscillation is reduced. Again, the proposed algorithm shows better convergence as compared to FSA algorithm. Comparative analysis between proposed variable step size and fixed step size algorithm is given in Table 1.

Table-I Comparison of proposed MVSA, FSA and LMF

<table>
<thead>
<tr>
<th>Parameters</th>
<th>LMF</th>
<th>FSA</th>
<th>MVSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step Size</td>
<td>Fixed</td>
<td>Fixed</td>
<td>Variable</td>
</tr>
<tr>
<td>Convergence Rate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Fast</td>
</tr>
<tr>
<td>Oscillations</td>
<td>High</td>
<td>Low</td>
<td>Almost zero</td>
</tr>
</tbody>
</table>

E. THD Analysis of Grid Parameters

Table 2 shows the THD data for grid voltage, grid current, load current and current through VSC as 0.79%, 2.95%, 23.73% and 7.46%.
Modified Variable Step Size Affine Algorithm for Grid Integrated PV System

Fig. 9. Harmonic analysis of grid signals (a) grid voltage (b) grid current (c) load current (d) VSC current

V. CONCLUSION

A 50KW PV-grid integrated single stage system is considered for supplying power to the non-linear load using MVSA algorithm. Dynamic stability of the system is analysed under variable irradiation and unbalanced loading condition. Performance of the proposed system is found to be better as compared to the fixed size algorithm. Oscillation of the estimated weight of the proposed system is found to be almost zero during both dynamic and steady state condition. Power transfer takes place under unity power factor irrespective of disturbances. From simulation results it is found that the THD of grid parameters are within the limit specified by IEEE-519 standard code [26].

APPENDIX

Grid integrated PV system specifications:

PV voltage (V_{PV})= 700V, PV power = 50KW. Number of PV modules in series (N_{s}) = 27, Number of PV modules in parallel (N_{p}) = 10, DC link capacitor (C_{DC}) = 9000μF, Interfacing inductor (L)=4mH, proportional gain (k_{p}) = 1, Integral gain (k_{i}) = 0.001, scaling factor (β) = 0.9, Line voltage at grid (V_{RyB})= 415V, sampling time (T_s) = 10^{-6} seconds. Nonlinear Load: Full bridge rectifier with RL (R=20Ω, L= 100 mH) load

REFERENCES

