
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-1, October, 2019

6494

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1128109119/2019©BEIESP
DOI: 10.35940/ijeat.A1128.109119
Journal Website: www.ijeat.org

Optimization of Neural Networks using Deep Ge-
netic Network Algorithm

Siddhartha Dhar Choudhury, Kunal Mehrotra, Shashank Pandey, Christhu raj, Rajeev Sukumaran

Abstract: The optimization of performance of a neural net-

work is a time taking and tedious process, this iterative and con-
tinuous process has no definite solution that works well for every
possible use case. To tackle this problem we propose an architec-
ture of neural networks called "Deep Genetic Network", which
can help in automatic selection of hyper parameter values based
on fitness measures during training of the network. The algo-
rithm is a confluence of deep neural networks and genetic algo-
rithm. The problem of optimizing a neural network can be classi-
fied into - Architecture and Hyperparameter optimization. A va-
riety of algorithms have been proposed to solve this issue. Our
approach uses concepts of mutation and mating (from genetic
algorithms) for helping the neural net in finding the optimal set
of hyperparameter values during training without requiring any
manually setting the values in an iterative trial and error ap-
proach. The architecture that we propose here works well in op-
timization of hyperparameter values in convolutional, recurrent
and affine layers. The usage of genetic algorithms for resolving
this issue has worked well given adequate training time and com-
putational resources.

Keywords: Hyperparameter optimization, Neural Networks,
Neural Network Optimization, Genetic Algorithms

I. INTRODUCTION

Optimizing a neural network is an important step in the
field of deep learning, it plays a major role in achieving high
accuracy in the trained model. The task mentioned here can
be divided into two categories - optimizing the neural net
architecture or the hyperparameters used.

The optimization of a neural network's architecture in-

volves two different tasks - finding the optimal node count
in a particular layer and optimal count of layers in the net-
work. This problem does not have any fixed formulae or
static value which can work in every problem, and for find-
ing the best value we have to approach this using a continu-
ous trial-and-error method in which different values are tried
out until the best values are found. There are various algo-

Revised Manuscript Received on October 30, 2019.

* Correspondence Author
Siddhartha dhar Choudry*, Computer Science and Engineering,

SRM Institute of Science and Technology, Chennai, India.
siddhathadhar_soumen@srmuniv.edu.in

Kunal Mehrota, Shashank Pandey, Christhu Raj, Computer Science
and Engineering, SRM Institute of Science and Technology, Chennai,
India. mrchristhuraj@gmail.com

Rajeev Sukumaran, Teaching Learning Centre, Indian Institute of
Technology Madras, Chennai, India. rajeev.s@wmail.iitm,ac.in

© The Authors. Published by Blue Eyes Intelligence Engineering and Sci-
ences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

rithms that are currently used for solving this issue, but this
is not addressed by the algorithm that we are proposing in
this particular paper.
The second type of problem in optimizing neural networks
is that of finding the best values for different hyperparame-
ters such as - rate of learning, optimizer used, rate of drop-
out, size of each batch and so on. The solution to this prob-
lem is again based on a continuous trial-and-error method,
as there is no static value which can work for all use cases.
The architecture that we introduce in this paper helps in
solving this problem efficiently as it leverages the power of
genetic algorithms to automate the process of selecting hy-
perparameter values. The usage of neural net helps in solv-
ing varied problems and can even work better than a human
in some cases, this is due to its ability to handle large
amounts of data in an efficient manner and in a short span of
time. Their ability to form highly precise relation from given
data is what makes them better as humans cannot fail to
identify these. This led us to think, why should we perform
the iterative method of finding the best set of hyperparame-
ters when we can assign this task to the neural network it-
self. By further developing on this base idea, we propose
Deep Genetic Network (DGN) for automatic selection of
hyperparameters when a neural network is given a pool of
different hyperparameter values thus removing the need for
applying the continuous trial-and-error approach.
DGN makes use of a technique called genetic algorithm in
combination with neural nets for getting the best set of hy-
perparameter values during training. The training process

begins with 'n' neural networks (n >1), and proceeds to find
the fittest networks from pairs of networks after training for
a set number of epochs. The time required for training mul-
tiple networks in a parallel fashion requires much more time
than for a single network, but this method is still faster than
performing the continuous trial and error method for selec-
tion of hyperparameter. The proposed algorithm makes use
of a technique called mating (or combination of genes of
parents) for finding the fittest possible hyperparameters after
every generation of training, during this process the more fit
(one whose dominance is more) is allowed to pass greater
number of parameters to the next generation of children
neural networks as compared to the recessive (less fit or
parent whose dominance is less) parent. The idea of mating
is taken from genetic algorithms, this aids the passage of
more fit parameters to the next generation and hinders the
passage of less fit parameters to subsequent children net-
works. Thus allowing only the best set of parameters to be
passed to later generations this resembles Darwin's "Theory
of Natural Selection" or the principle of "Survival of the
fittest", where only the most fit genes are allowed to survive
in any environment.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
mailto:rajeev.s@wmail.iitm,ac.in
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.A1128.109119&domain=www.ijeat.org

Optimization of Neural Networks using Deep Genetic Network Algorithm

6495

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1128109119/2019©BEIESP
DOI: 10.35940/ijeat.A1128.109119
Journal Website: www.ijeat.org

From the different experimentations we prove that the pro-
posed algorithm or network architecture aids in automatic
selection and optimization of hyperparameter values thus
allowing building of neural networks much robustly rather
than applying the iterative trial and error approach of select-
ing hyperparameter values.
In our experimentations we propose four types of schemes
of mating - extreme-ends, adjacent-ranked, cousin to cousin,
and sibling to sibling. These schemes are only applicable
when the number of parent networks in the inception gener-
ation are more than or equal to two. Choosing a particular
scheme depends on various factors as will be evident from
later sections.

II. RELATED WORK

There are a variety of different works done for solving the
problem of optimizing hyperparameter values, some of the
most notable algorithms are presented below:

A. Random Search

The random search [2] algorithm derives the idea from Grid
Search, the difference in this algorithm is that this does not
search for the fittest value from the population of hyperpa-
rameters, rather the values are sampled from a random dis-
tribution. Thus the process aids in reduction of time that is
needed for finding best set of hyperparameters, this makes
this algorithm much more efficient than grid search.
This algorithm begins execution by defining a random dis-
tribution of hyperparameters, next the number of training
steps are set for which the algorithm will sample values
from the defined distribution. Since in most use cases, the
values of hyperparameters are not of equal importance and
sampling their values from a randomly initialized distribu-
tion population can help in solving the issue of choosing the
best hyperparameter values, this performs much better than
grid search form most problems.

B. Meta Learning

The meta learning [3] algorithms are given a huge variety of
tasks during training and their generalization capabilities are
tested on unseen tasks. For instance, a particular task may be
trained to classify an image into five different classes, can
learn optimal navigation within a entirely new maze just
after a single iteration in the entire maze. The difference
between this and general machine learning algorithms is that
the latter are given only one task for training and are tested
on examples other than the training data points from the
dataset.
The meta training stage involves training on tasks from the
meta training set. In this there are two optimizers - meta
learning who aids the learners in training and learner who is
actually responsible for learning new task. The methodolo-
gies for meta learning fall into these categories: metric
learning, learning optimizers, and recurrent modes.

C. Grid Search

In the grid search [1] algorithm hyperparameter values are
tuned by evaluation and building of every possible hyperpa-
rameter set present in a pool called grid. In this approach a
pool of hyperparameter values are specified which are opti-
mized for the use case that they are applied to. A searching
function then combines different hyperparameter values that

are specified in the population of available values in the
grid.
The algorithm keeps a copy of the most fit set of hyperpa-
rameter as a set is processed from the grid, if one provides
with better result than the previous sets then this is set as the
best possible option out of the scanned possibilities. This
continues to update the best values for hyperparameter as
the scanning continues.
This algorithm thus continuously chooses the best set of
hyperparameter values and the network is retrained repeat-
edly until the best set of values are found, this makes the
approach extremely time intensive and tough to train with-
out powerful hardware resources.

III. GENETIC ALGORITHMS

Genetic algorithm [4] belongs to the class of evolutionary
algorithms which helps in solving problems related to opti-
mization. This draws inspiration from Darwin's "Theory of
Natural Selection" and borrows the concept of evolution [5,
8] which is applied in the context of programming.
The algorithm begins processing with an inception or first
generation species population (which are deep neural net-
works in our case), these participants vary from each other.
These individuals from the population are then allowed to
mate and generate children who consist of the mixture of
genes from both the parents involved, and in some cases can
be better than the previous generation in terms of fitness.
There are two important features in this algorithm: Mutation
and Mating.

A. Mating

The process of producing children (one or more than one
child) by parents is referred to as mating. The children pro-
duced exhibit characteristics that resemble both parents.
Genes from the parents are passed onto the child networks,
these genes help in expressing characteristic traits of the
parents that the children inherit. These parents are of two
types - recessive and dominant, the dominant parent has
more chances of expressing genes in the child than the re-
cessive parent. In the algorithm we propose here, biases and
weights are the representation of genes that a neural network
possesses, these are passed to the children networks which
are formed by combination of parent's genes. These child
neural networks have the best set of parameters (with a
greater density of dominant genes), and are an improvement
over the parent generation of networks. The dominant parent
passes most genes to child networks, as these are more fit
and can survive in subsequent generations.

B. Mutation

The variations in child neural networks that were previously
not present in parent generations is referred to as mutation.
Mating helps in production of children, and this process
passes forward the most fit set of parameters (or genes) from
both parents involved in the process, but mutation is respon-
sible for making a greater positive change towards efficien-
cy in the children. These changes might be minute or dras-
tic, and leads to a wider variety among a generation of chil-
dren.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-1, October, 2019

6496

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1128109119/2019©BEIESP
DOI: 10.35940/ijeat.A1128.109119
Journal Website: www.ijeat.org

In context of biology this is what helped in formation of
complex organisms from the single cells that were present in
the beginning of time on Earth. The process of mutation has
a key role in the evolutionary process, these variations make
the child more strong and gives resistance to external dan-
gers that the previous generation was susceptible to.
In the case of this algorithm, mutation takes place in the
training iterations for which a network is allowed to train
before mating process, during this process the parent net-
works update their parameters continuously using backward
propagation (gradient descent) until they are ready to give
rise to child neural networks in which a mixture of genes
from two parents is passed on. These mutations help the
parent networks learn and pass their learnt features to the
next generation, and this is what makes the current genera-
tion more efficient and a better choice than the previous
generation networks. These networks are thus in a way bet-
ter version of their parents.
Both of the above explained processes have a key role in
genetic algorithms and in the proposed algorithm, these help
the neural networks in choosing the best set of hyperpa-
rameter values on their own.

IV. UNDERSTANDING DEEP GENETIC NET-
WORK

Deep Genetic Network's process of learning begins by
creating a sample collection, that consists of many sets of
hyperparameter values (each associated to a neural network)
- a pool of networks with unique hyperparameters. As the
process of training advances, the various neural networks
continuously update the values of their parameters (weights
and biases) by back propagating error using gradient de-
scent. After a fixed number of iterations of training
(epochs), neural networks are selected for mating in pairs to
generate child neural networks. These child neural networks
carry the fittest set of parameters from the previous genera-
tion. These then undergo mutation for a certain number of
training iterations then are ready to produce children neural
networks of their own. These strategies (called mutation and
mating) are taken from genetic algorithms [6, 9].

A. Mating

The idea of mating is to combine two neural network par-
ents to generate neural network children. Parent networks
share their gene to the child network, the child thus has fea-
tures from both the parent networks. In this case, the biases
and weights of the parent network can be considered to as
genes which are inherited by the children in subsequent
generations.
This process of mating is done in every 'n' iterations. The
inception generation (very first) parent neural networks get
'n' iterations of training, further they are ranked according to
their fitness (the efficiency with which they can minimize
loss). Child neural networks that are generated after this
process can be of two different types - 60:40 and 80:20.
These ratios signify the percentage of genes inherited by the
dominant (greater efficiency) and recessive (lesser efficien-
cy) parent, for instance the 80 to 20 neural network child has
80 percent gene parameters inherited from the parent neural
network which is more dominant and rest belong to the re-

cessive neural network parent, this holds true for the 60:40
child neural network.
On the basis of the count of inception parents, the algorithm
can be classified into two types:

1. Network of double inception parents: This type of
network has only two parents in the very first or inception
generation, and in the subsequent child network genera-
tions. After mating the pair of parents give rise to two
neural network child, this occurs in subsequent "n" train-
ing epochs. In the final "n" training epochs, the mating
process generates only one network, this produces output
that the network is expected to produce.

2. Network of double-N inception parents: The incep-
tion parent generation has a total of "2 times N" neural

networks, here N ≥ 1. In the case when N = 1, this will
resemble the network of double inception parents. As
training proceeds and newer generation of child networks
evolve, parent networks produce a pairs of child net-
works. The child neural networks evolve to become par-
ent network and produce their own child networks. As the
training reaches last generations, child neural networks
start combining exponentially by factor of 2𝑁, this con-
tinues till there is only one network which is responsible
for producing the required output.

We propose two different schemes of mating (techniques)

which can be used in the Network of double-N inception
parents:

Figure 1. Two Parent Deep Genetic Network

1. Extreme-Ends Mating: This technique or scheme of
mating requires the process of mating to occur between
networks belonging to extreme ends when they are
ranked according to their fitness (greater efficiency) in
descending order. For instance, in the ordered list of net-
works first and last parent mate to produce a pair of chil-
dren, second and last but one mate together, and so on.
This mating scheme mixes together the genes (or parame-
ters) of the fittest parent network with the least fit one.
This makes sure, that even the most recessive generation
does not get completely suppressed, as these can turn out
to be dominant in later generations.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Optimization of Neural Networks using Deep Genetic Network Algorithm

6497

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1128109119/2019©BEIESP
DOI: 10.35940/ijeat.A1128.109119
Journal Website: www.ijeat.org

Figure 2. Extreme Mating Scheme

2. Adjacent-Ranked Mating: This scheme of mating al-
lows parents who are adjacent to each other when they
are ranked in decreasing order of fitness to mate and pro-
duce child networks. This involves parents who are not
from extreme ends of fitness ordering. For instance, if we
have ten networks in a particular generation of training
and they are ordered after "n" iterations according to their
fitness, then the first and second in the list of fitness will
mate together and so on.

Figure 3. Adjacent Mating Scheme

On the basis of the immediately previous generation of par-
ent networks there are two different categories:- cousin to
cousin scheme and sibling to sibling scheme.

1. Cousin to Cousin Mating: This scheme of mating of
double-N inception parents involves combination of two
parents who did not have the same immediate parent (i.e.
they belong to different parent neural networks). Using
this scheme helps in choosing more fit set of parameters,
as the genes are derived from a diverse parent pool. This
thus has more chances of producing stable and efficient
child networks, these children have better chances of
passing their genes to subsequent generations as parents,
due to the varied exploration of parameters in ancestor
generations.
2. Sibling to Sibling Mating: This scheme of mating in-
volves combination of parameters in children who are
generated from same pair of neural network parents, these
children have the best set of parameters from both the
parents. In one generation even though a particular set of
genes might seem to be recessive, it can later revive as a
dominant gene, but this scheme does not allow such par-
ents to pass on their parameters for long.

B. Mutation

The changes in a child neural network that makes it more fit
than the parent network is mutation. In this process minor
changes in the genes of the child network are done, these
tweaks in the parameters help the child network to produce
better results than the previous generation. The changes
made to the child helps the network to reduce the errors in
the parent generation.
Deviating from the technical aspects, the concept of muta-
tion can be best understood from a biological example - the
case of peppered moths during industrial revolution. Our
focus is on a particular species of moths called 'peppered
moths'. Before the beginning of industrial revolution and the
spread of factories in cities these moths were black and
white in color. This color provided them camouflage in the
similar colored barks of trees, thus decreasing their chances
of getting in the field of vision of their predators. Due to
mutation (changes in genes) a few individuals of this species
were completely black in color and were more susceptible to
be seen by the predator, thus making this gene recessive.
When industrial revolution began, smoke from the factories
covered the trees nearby with a layer of ash and now the
population with recessive genes were less susceptible than
the black and white gene moths, and this led to increase in
dominance of the former gene population over the black and
white population.
In the case of this algorithm, parent networks combine (or
mate) to give rise to child networks, these children get
trained for "n" iterations till they themselves are capable of
producing children of their own. During these "n" training
steps, the child networks continue learning and tweaking
their parameters to minimize error, these more trained pa-
rameters (or genes) are much better than the previous parent
generation, in a way representing mutation in these net-
works.
For these reasons, the presented neural network architecture
helps in finding the fittest set of parameters that are availa-
ble in the initialized pool of hyperparameters. This auto-
mates the process of finding the best set of hyperparameters,
which till now is done manually in most cases using a itera-
tive trial and error methodology. This thus requires less su-
pervision than its manual counterpart and can save the time
of the person responsible for designing the neural network
for solving a particular problem.

V. EXPERIMENTATION

The below mentioned experiments were performed using
deep genetic networks to verify their validity in neural net-
work training process:

A. Convolutional Neural Network - Image Classifier

In deep learning, image classification tasks are done using
an architecture called convolutional neural network [7, 12].
This experiment relies used this architecture to classify im-
ages into dog or not dog. The model we used consisted of
five layers (hidden and output), this comprised of - three
layers of two dimensional convolution operation and two
affine layers (the final layer being the sigmoid layer which
produces the output of the network).

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-1, October, 2019

6498

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1128109119/2019©BEIESP
DOI: 10.35940/ijeat.A1128.109119
Journal Website: www.ijeat.org

The hyperparameters used to train this network were - learn-
ing rate (𝛼) and the rate of dropout that is applied to the
affine layers. Using iterative trial and error method the best
set of values found for these two hyperparameters were -
0.0070 for Learning rate 𝛼 and 0.7 for rate of dropout after
the first affine layer. After training the model the resulting
accuracy on the test set of images was 0.85 (or 85\%), after
2600 epochs.
The values obtained were a result of re-training continuous-
ly with different sets of hyperparameters, using these values
the network achieved minimum loss and high accuracy, but
required a lot of efforts to train. In this case the proposed
algorithm comes into play.

A1. First Model: Double Inception Parents DGN

In this model two parent networks were used in the incep-
tion (or first) generation of training, the hyperparameter set
used for these networks are mentioned below:-

1. First NN Parent:

1. Learning Rate (𝛼) = 0.007
2. Dropout Rate = 0.75

2. Second NN Parent:
1. Learning Rate (𝛼) = 0.0055
2. Dropout Rate = 0.8

A2. Second Model: Double-N Inception Parents DGN with
Extreme-Ranked Scheme of Mating

In this model two parent networks were used in the incep-
tion (or first) generation of training, the hyperparameter set
used for these networks are mentioned below:-

1. First NN Parent:

1. Learning Rate (𝛼) = 0.007
2. Dropout Rate = 0.7

2. Second NN Parent:
1. Learning Rate (𝛼) = 0.0065
2. Dropout Rate = 0.8

3. Third NN Parent:
1. Learning Rate (𝛼) = 0.0055
2. Dropout Rate = 0.6

4. Fourth NN Parent:
1. Learning Rate (𝛼) = 0.002
2. Dropout Rate = 0.2

In the model, neural network parents got 50 training steps
before the mating process began, during this process the
collection of parent networks were arranged in descending
order of fitness, this was followed by combining of genes
(or mating) to produce children. The scheme of mating used
in this case was extreme-ends i.e. parent network 1 com-
bined genes with 4 and network 2 with that of 3. These chil-
dren were reduced in the final hundred epochs as four chil-
dren were reduced to two (in the first fifty epochs) and from
two to one (in the final fifty epochs). The resulting model
gave a test image set accuracy of 0.87 (or 87\%).

A3. Third Model: Double-N Inception Parents DGN with
Adjacent-Ranked Scheme of Mating

The last neural network model trained for image classifica-
tion problem had four neural network parents. The follow-
ing are the details of hyperparameter pool used:-

1. First NN Parent:

1. Learning Rate (𝛼) = 0.007
2. Dropout Rate = 0.7

2. Second NN Parent:
1. Learning Rate (𝛼) = 0.0065
2. Dropout Rate = 0.8

3. Third NN Parent:
1. Learning Rate (𝛼) = 0.0055
2. Dropout Rate = 0.6

4. Fourth NN Parent:
1. Learning Rate (𝛼) = 0.002
2. Dropout Rate = 0.2

The trained neural network with Adjacent-Ranked scheme
of mating achieved a test image set accuracy of 0.88 (or
88\%).

B. Artificial Neural Network Based Regression Model

When working with numeric or text data (without any tem-
poral coherence) using the basic multilayer perceptron [11,
13] model provides great results. Regression is a task in
which continuous data is predicted. In this model the net-
work had three affine layers [10] (single output layer and
two layers of hidden units). This network was trained using
the adam optimizer.
The three parameters that were involved in the training of
the above mentioned neural network were - rate of learning
(𝛼, rate of dropout used in the affine layers, and momentum
(required in adam optimizer). Using iterative trial-and-error
process the ideal set of hyperparameters resulted in a final
testing accuracy of 0.94 (or 94%). This model required 4500
training steps and had these set of hyperparameters - 0.06
(𝛼), 0.6 (rate of dropout), and 0.999 (for momentum).
Double-N inception parent DGN performed great in the giv-
en problem definition. This increased the accuracy of testing
set to 0.97 (or 97\%).

B1. First Model: Double-N Inception Parents DGN

The neural network model had two inception parent neural
networks, these were trained for 100 epochs before mating
to produce child neural networks (60 to 40 and 80 to 20
children). The initial neural network parents had the follow-
ing configuration of hyperparameter pool:-

1. First NN Parent:

1. Learning Rate (𝛼) = 0.006
2. Dropout Rate = 0.6
3. Momentum = 0.999

2. Second NN Parent:
1. Learning Rate (𝛼) = 0.08
2. Dropout Rate = 0.7
3. Momentum = 0.99
4.

These experiments show how Deep Genetic Networks pro-
vide the user with an automatic hyperparameter selection
option which saves a lot of time that was previously used in
iterative trial-and-error process for finding the best set of
hyperparameters.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Optimization of Neural Networks using Deep Genetic Network Algorithm

6499

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1128109119/2019©BEIESP
DOI: 10.35940/ijeat.A1128.109119
Journal Website: www.ijeat.org

VI. CONCLUSION

From the experiments it can be established that Deep Genet-
ic Networks help in training and optimization of the hy-
perparameters automatically without requiring manual su-
pervision and iterative trial and error process of training.
This process is done in a parallel fashion by using concepts
like mating and mutation. The network provides the most fit
set of genes (or hyperparameters) at the end of training from
the available pool of hyperparameter. The proposed algo-
rithm thus provides an efficient path for solving the hy-
perparameter optimization problem.
It is also seen in the various experiments conducted that the
adjacent-ranked scheme of mating is a better option than
extreme-ends scheme. A second observation is related to the
choice of mating scheme based on immediate parent, among
these the cousin to cousin scheme provides much more effi-
cient and faster converging model than sibling to sibling
scheme.

ACKNOWLEDGMENT

Firstly, want to acknowledge Andrew Ng, Geoffrey Hinton,
Sebastian Thrun for their online training on deep and ma-
chine learning in Coursera and Udacity which ignited our
interest in the field of deep learning and artificial intelli-
gence. We would like to acknowledge Shashank Sharma for
stimulating our creativity and proof reading this paper to
provide his valuable inputs. Rushil Gupta provided much-
needed support with LATEX typesetting.

REFERENCES

1. Taijia Xiao, Dong Ren, Shuanghui Lei, Junqiao Zhang, Xiaobo Liu,
Based on grid-search and PSO parameter optimization for Support
Vector Machine, Proceeding of the 11th World Congress on Intelligent
Control and Automation.

2. James Bergstra, Yoshua Bengio, Random Search for Hyper-Parameter
Optimization, Journal of Machine Learning Research 13 (2012) 281-
305.

3. Nicolas Schweighofer and Kenji Doya. Meta-learning in reinforcement
learning. Neural Networks, 16(1):5–9, 2003

4. K.F. Man, K.S. Tang, S. Kwong, Genetic algorithms: concepts and
applications, IEEE Transactions on Industrial Electronics.

5. Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Leh-
man, Kenneth O Stanley, Jeff Clune, Deep Neuroevolution: Genetic
Algorithms are a Competitive Alternative for Training Deep Neural
Networks for Reinforcement Learning, ICLR, 2019.

6. Adarsh Sehgal, Hung Manh La, Sushil J Louis, Hai Nguyen, Deep
Reinforcement Learning Using Genetic Algorithm for Parameter Opti-
mization, CoRR, 2019.

7. Yanan Sun, Bing Xue, Mengjie Zhang, Garg G Yen, Automatically
Designing CNN Architectures Using Genetic Algorithm for Image
Classificiation, CoRR, 2018.

8. Eli Omid David, Iddo Greental, Genetic Algorithms for Evolving Deep
Neural Networks, GECCO Comp’14, 2014.

9. Delowar Hossain, Genci Capi, Genetic Algorithm Based Deep Learn-
ing Parameter Tuning for Robot Object Recognition and Grasping,
2017.

10. David J Montana, Lawrence Davis, Training Feedforward Neural Net-
works using Genetic Algorithms, IJCAI’89, 1989.

11. Xiaodong Cui, Wei Zhang, Zoltán Tüske, Michael Picheny, Evolution-
ary Stochastic Gradient Descent for Optimization of Deep Neural Net-
works, NIPS, 2018.

12. Vishal Prem, Mark Sheridan Nonghuloo, Nagaraja Rao A, Optimiza-
tion of Siamese Neural Networks Using Genetic Algorithm, Interna-
tional Journal of Engineering and Advanced Technology (IJEAT),
2019.

13. Gregory Morse, Kenneth O Stanley, Simple Evolutionary Optimization
Can Rival Stochastic Gradient Descent in Neural Networks, GECCO,
2016.

http://www.ijeat.org/

