The Forcing Restrained Steiner Number of a Graph

M. S. Malchijah Raj, J. John

Abstract: A restrained Steiner set of a connected graph G of order p ≥ 2 is a set W ⊆ V(G) such that W is a Steiner set, and if either W = V or the subgraph G[V − W] induced by [V − W] has no isolated vertices. The restrained Steiner number s_r(G) of G is the minimum cardinality of its restrained Steiner sets and any restrained Steiner set of cardinality s_r(G) is a minimum restrained Steiner set of G. For a minimum restrained Steiner set W of G, a subset T ⊆ W is called a forcing subset for W if W is the unique minimum restrained Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing restrained Steiner number of W, denoted by f_r(W), is the cardinality of a minimum forcing subset of W. The forcing restrained Steiner number of G, denoted by f_r(G) = min{f_r(W)}, where the minimum is taken over all minimum restrained Steiner sets W in G. Some general properties satisfied by the concept forcing restrained Steiner number are studied. The forcing restrained Steiner number of certain classes of graphs is determined. It is shown that for every pair a, b of integers with 0 ≤ a < b and b ≥ 2, there exists a connected graph G such that f_r(G) = a and s_r(G) = b.

Keywords: Steiner distance, Steiner number, forcing Steiner number, restrained, Steiner number, forcing restrained Steiner number.

I. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest uv path in G. A uv path of length d(u, v) is called an uv geodesic. It is known that the distance is a metric on the vertex set V (G). For basic graph theoretic terminology we refer to [6,1]. For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius, radG and the maximum eccentricity is its diameter, diamG of G. Two vertices x and y are antipodal if d(x, y) = diamG. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. If e = {u, v} is an edge of a graph G with d(u) = 1 and d(v) > 1, then we call e a pendant edge, u a leaf or end vertex and v a support. A geodesic set of G is a set S ⊆ V(G) such that every vertex of G is contained in a geodesic joining some pair of vertices in S. The geodetic number g(G) of G is the minimum cardinality of its geodetic sets and any geodetic set of cardinality g(G) is a minimum geodetic set.

For a nonempty set W of vertices in a connected graph G, the Steiner distance d(W) of W is the minimum size of a connected subgraph of G containing W. Necessarily, each subgraph is a tree and is called a Steiner tree with respect to W or a Steiner W - tree. It is to be noted that d(W) = d(u, v), when W = {u, v}. If v is an end vertex of a SteinerW - tree, then v ∈ W. If W is connected, then any Steiner W - tree contains the elements of W only. S(W) denotes the set of all vertices that lie on Steiner W -trees. A set W ⊆ V (G) is called a Steiner set of G if every vertex of G lies on some Steiner W -tree or if S(W) = V (G). A Steiner set of minimum cardinality is a minimum Steiner set or simply a s - set and this cardinality is the Steiner number s(G) of G. The Steiner number of a graph was introduced in [4]. The Steiner number of a graph was further studied in [5, 7, 11]. Steiner tree problem is a distance related invariant that arises by considering the cheapest subgraph that connects a given set of vertices. It has applications in design of computer circuits, long distance telephone lines, or mail routing, combinatorial optimization etc. It is also used to construct roads of minimum total length to interconnect several highways. The computational nature of the problem makes it a traditional research subject in theory of computing. They have numerous application in industries as well. A set W of vertices of a graph G is a restrained Steiner set if W is a Steiner set, and if either W = V or the subgraph G[V − W] induced by [V − W] has no isolated vertices. The minimum cardinality of a restrained Steiner set of G is the restrained Steiner number of G, and is denoted by s_r(G). A restrained Steiner set of minimum cardinality is called the restrained Steiner set of G. This concept is introduced and studied in [8]. The forcing Steiner number of a graph is introduced in [13] and further studied in [14]. The forcing concept is applied in various graph parameters by several authors. In this paper we study the forcing concept in restrained Steiner set of a connected graph.

The following theorems are used in the sequel.

Theorem 1.1. [8] Each extreme vertex of a graph G belongs to every restrained Steiner set of G.

Theorem 1.2. [8] Let G be a non trivial tree which is not a star. Then s_r(G) is equal to the set of all end vertices of G.

Theorem 1.3. [8] For any tree T with p ≥ 3 vertices, s_r(T) = p if and only if T is a star.
The Forcing Restrained Steiner Number of a Graph

Throughout the following G denotes a connected graph with at least two vertices.

II. THE FORCING RESTRAINED STEINER NUMBER OF A GRAPH

Even though every connected graph contains a minimum restrained Steiner set, some connected graph may contain several minimum restrained Steiner sets. For each minimum restrained Steiner set W in a connected graph G, there is always some subset T of W that uniquely determines W as the minimum restrained Steiner set containing T. We consider such “forcing subsets” in this section.

Definition 2.1. Let G be a connected graph and W a restrained Steiner set of G. A subset T ⊆ W is called a forcing subset for W if W is the unique minimum restrained Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing restrained Steiner number of W, denoted by \(r_s(W) \), is the cardinality of a minimum forcing subset of W. The forcing restrained Steiner number of G, denoted by \(r_s(G) \), is \(r_s(G) = \min \{ r_s(W) \} \), where the minimum is taken over all minimum restrained Steiner sets W in G.

Example 2.2. For the graph G given in Figure 2.1, \(W = \{ v_1, v_3 \} \) is the unique minimum restrained Steiner set of G so that \(r_s(G) = 0 \). For the graph G given in Figure 2.2, \(W_1 = \{ v_1, v_2, v_6 \} \) and \(W_2 = \{ v_1, v_3, v_6 \} \) are the only two \(r_s \) sets of G. It is clear that \(r_s(W_1) = 1 \) and \(r_s(W_2) = 1 \) so that \(r_s(G) = 1 \).

The next theorem follows immediately from the definition of the restrained Steiner number and the forcing restrained Steiner number of a connected graph G.

Theorem 2.3. For every connected graph G, \(0 \leq r_s(G) \leq s_r(G) \).

Remark 2.4. The bounds in Theorem 2.3 are sharp. For the graph G given in Figure 2.1, \(r_s(G) = 0 \). Also, all the inequalities in the theorem are strict. For the graph G given in Figure 2.2, \(r_s(G) = 1 \) and \(s_r(G) = 3 \) so that \(0 < r_s(G) < s_r(G) \).

Definition 2.6. A vertex v of a connected graph G is a restrained Steiner vertex of G if v belongs to every restrained Steiner set of G. If G has a unique restrained Steiner set \(W \), then every vertex of W is a restrained Steiner vertex of G.

Example 2.7. For the graph G given in Figure 2.2, \(W_1 = \{ v_1, v_2, v_6 \} \) and \(W_2 = \{ v_1, v_3, v_6 \} \) are the only two \(s_r \) sets of G so that every \(s_r \) set contains the vertices \(v_1 \) and \(v_6 \). Hence the vertices \(v_1 \) and \(v_6 \) are the restrained Steiner vertices of G.

Theorem 2.8. Let G be a connected graph and S be the set of all restrained Steiner vertices of G. Then \(f_s(G) \leq s_r(G) - |S| \).

Proof. Let W be a minimum restrained Steiner set of G. Then \(s_r(G) = |W| \). It is clear that S ⊆ W. Let T be the union minimum forcing restrained Steiner set containing W - S. Thus \(f_s(G) \leq |W - S| \leq |W| - |S| = s_r(G) - |S| \).

Corollary 2.9. If G is a connected graph with k extreme vertices, then \(f_s(G) \leq s_r(G) - k \).

Proof. The proof follows from Theorems 1.1 and 2.8.

Remark 2.10. The bound in Theorem 2.8 is sharp. For the graph G given in Figure 2.2, \(W_1 = \{ v_1, v_2, v_6 \} \) and \(W_2 = \{ v_1, v_3, v_6 \} \) are the only two \(s_r \) sets of G such that \(f_s(W_1) = 1 \) and \(f_s(W_2) = 1 \) so that \(f_s(G) = 1 \) and \(s_r(G) = 3 \). Also, \(S = \{ v_1, v_6 \} \) is the set of all restrained Steiner vertices of G and so \(f_s(G) = s_r(G) - |S| \). Also, the inequality in Theorem 2.8 can be strict. For the graph G given in Figure 2.3, \(W_1 = \{ v_1, v_6, v_7 \} \) and \(W_2 = \{ v_1, v_2, v_7 \} \) are the only two \(s_r \) sets of G so that \(s_r(G) = 3 \). It is clear that \(f_s(W_1) = f_s(W_2) = 1 \) so that \(f_s(G) = 1 \). Now, \(v_1 \) is the only restrained Steiner vertex of G and so \(|S| = 1 \). Thus \(f_s(G) < s_r(G) - |S| \).
In the following we determine the forcing restrained Steiner number of some standard graphs.

Theorem 2.11. For the complete graph $K_p(p \geq 3, f_{rs}(K_p)=0$.

Proof. Since the set of all vertices of a complete graph K_p is the unique minimum restrained Steiner set, it follows from Theorem 2.5(a) that $f_{rs}(K_p) = 0$.

Theorem 2.12. For the complete bipartite graph $K_{m,n}(m,n \geq 2), f_{rs}(K_{m,n}) = 0$.

Proof. For the complete bipartite graph $K_{m,n}(m,n \geq 2)$, we have $s_r(K_{m,n}) = m+n$. It follows from Theorem 2.5(a) that $f_{rs}(K_{m,n}) = 0$.

Theorem 2.13. Let G be a non trivial tree. Then $f_{rs}(G) = 0$.

Proof. If G is not a star, then by Theorem 1.2, the set of all end vertices of G is the unique minimum restrained Steiner set of G. Now, it follows from Theorem 2.5(a) that $f_{rs}(G) = 0$.

If G is a star $K_{1,p-1}$, then it follows from Theorem 1.3, that the set of all vertices of G is the unique minimum restrained Steiner set of G. By Theorem 2.5(a) it follows that $f_{rs}(G) = 0$.

Theorem 2.14. For the cycle $C_p(p \geq 3), f_{rs}(C_p) = \begin{cases} 0 \text{ for } p \in \{3,4,5\} \\ 1 \text{ for } p \geq 6 \text{ and } p \text{ is even.} \\ 2 \text{ for } p \geq 7 \text{ and odd} \end{cases}$

Proof. It is proved in [8] that the restrained Steiner number $s_r(C_p) = p$ for $p \in \{3,4,5\}$ and so it follows from Theorem 2.5(a) that $f_{rs}(C_p) = 0$ for $p \in \{3,4,5\}$. Let $p \geq 6$. For any cycle C_p, the restrained Steiner set consists of a pair of antipodal vertices of C_p and from Theorem 2.5(b) it follows that $f_{rs}(C_p) = 1$. Let p be odd with $p = 2n + 1, n = 1,2,3,...$.

Let $C_p = \{v_1, v_2, \ldots, v_n, v_{n+1}, v_{n+2}, \ldots, v_{2n+1}, v_1\}$.

If $W = \{u, v\}$ is an isometric set of two vertices of C_p, then no vertex of the $u-v$ longest path lies on the Steiner W - tree in C_p and so no two element subset of C_p is a Steiner set of C_p.

Now it is clear that the sets $W_1 = \{v_1, v_{n+1}, v_{n+2}\}, W_2 = \{v_2, v_{n+2}, v_{n+3}\}, \ldots, W_{n+1} = \{v_{2n+1}, v_1, v_2\}$ are the s_r- sets of C_p. Since $p \geq 7$, the subgraph $G[V - W](1 \leq i \leq 2n+1)$ has no isolated vertices. Therefore the s_r- sets of C_p are the s_r- sets of C_p. It is clear from the s_r- sets of C_p, each $[v_i](1 \leq i \leq 2n+1)$ is a subset of more than one s_r- set of C_p. Hence it follows from Theorem 2.5(a) (and by the rest) that $f_{rs}(C_p) \geq 2$. Now since v_{n+1} and v_{n+2} are antipodal to v_1, it is clear that W_1 is the unique s_r- set containing $\{v_{n+1}, v_{n+2}\}$ and so $f_{rs}(C_p) = 2$. Hence the proof.

Theorem 2.15. For the wheel $W_p = K_1 + C_{p-1}, (p \geq 5, srWp = p-3$ and $f_{rs}Wp = p-4$.

Proof. Let $G = W_p$. Let v be the vertex of K_1 and let $v_1, v_2, \ldots, v_{p-1}$ be the cycle C_{p-1}. For $p = 5$ let $W_1 = \{v_1, v_2\}$ and $W_2 = \{v_2, v_3\}$. Then $W_1 = 1, 2$ is a Steiner set of G. Since the subgraph $G[V - W]$ is a Steiner set of G so that $s_r(W_p) = 2 = p - 3$ and $f_{rs}(W_p) = 1 = p - 4$. Let $p \geq 6$. Let W be a Steiner set of G. If $v \in W$, then W is connected. Then the Steiner W - tree contains elements of W only. Therefore $\not\in W$. Hence $W \not\in V(C_{p-1})$.

Let W be any subset of vertices of C_{p-1} of cardinality $p - 3$ obtained by deleting two non-adjacent vertices of C_{p-1}. We may assume without loss of generality that $W = \{v_1, v_2, \ldots, v_{p-3}, v_{p-1}\}$, where $i \leq j < p - 1$ and $j \geq 1$. Since the subgraph induced by $G[V - W]$ has no isolated vertices, it is clear that W is a minimum restrained Steiner set of G so that $s_r(W_p) \leq |W| = p - 3$. Let W be any restrained Steiner set with $|W| \leq p - 4$ Then at least three vertices of C_{p-1} do not belong to W. If these vertices are consecutively $\{v_1, v_2, \ldots, v_{p-1}\}$, then W is not a Steiner set of G. Otherwise there are non adjacent vertices $\{v_k, v_{k+1}\}$ such that $v_k, v_{k+1} \not\in W$. Since the size of any Steiner W - tree is almost $p - 4$, it is easily seen that v_k and v_{k+1} do not lie on any Steiner W - tree of G and W is not a restrained Steiner set of G. Thus $s_r(W_p) = p - 3$. Since the subgraph induced by a proper Steiner set is disconnected, it follows that any s_r- set of the form $W = \{v_1, v_2, \ldots, v_{p-3}, v_{p-1}\}$ is a Steiner set of G. Let W be a Steiner set of G. Then there exists an s_r- set W' such that $W \not\in W'$. Since $W' = W$, $|W'| = p - 3$ and $|T| = p - 4$, W' must contain exactly one of v_k. Hence, W' is connected and so W' is not an extended Steiner set of G, which is a contradiction. Hence $f_{rs}(W_p) = p - 4$.

Theorem 2.16. If $W = \{u, v\}$ is a s_r- set of a connected graph G, then u and v are two antipodal vertices of G.

Proof. Let $W = \{u, v\}$ be a s_r- set of G. Then every vertex of G lies on a Steiner W- tree of G. Since every Steiner W- tree is a $u - v$ geodesic, every vertex of G lies on a geodesic joining u and v. Also the subgraph $[V - W]$ has no isolated vertices. We claim that $d(u, v) = d(G)$. If $d(u, v) < d(G)$, then let x and y be two vertices of G such that $d(x, y) = d(G)$. Now, it follows that x and y lie on distinct geodesics joining u and v. Hence...
The Forcing Restrained Steiner Number of a Graph

d(u, v) = d(u, x) + d(x, v) (1)
and
\[d(u, v) = d(u, y) + d(y, v) \] (2)

By the triangle inequality,
\[d(x, y) \leq d(x, u) + d(u, y) \] (3)

Since \(d(u, v) < d(x, y) \), (3) becomes
\[d(u, v) < d(x, u) + d(u, y) \] (4)

Using (4) in (1), we get \(d(x, v) < d(x, u) + d(u, y) - d(u, x) = d(u, y) \). Thus,
\[d(x, v) < d(u, y) \] (5)

Also, by triangle inequality, we have
\[d(x, y) \leq d(x, v) + d(v, y) \] (6)

Now, using (5) and (2), (6) becomes \(d(x, y) < d(u, y) + d(v, y) = d(u, v) \). Thus, \(d(G) < d(u, v) \) which is a contradiction. Hence \(d(u, v) = d(G) \) so that \(u \) and \(v \) are antipodal vertices of \(G \).

Theorem 2.17. If \(G \) is a connected graph with \(s_r(G) = 2 \), then \(f_r(G) \leq 1 \).

Proof. Let \(W = \{u, v\} \) be any \(s_r \) - set of \(G \). Then by Theorem 2.16, \(u \) and \(v \) are antipodal vertices of \(G \). Suppose that \(f_r(G) = 2 \). Then it follows from Theorem 2.5 (c) that \(W \) is not the unique \(s_r \) - set containing \(u \) and so there exists \(x \neq u \) in \(G \) such that \(W' = \{u, x\} \) is also a \(s_r \) - set of \(G \). By Theorem 2.16, \(u \) and \(x \) are two antipodal vertices of \(G \) and \(v \) is an internal vertex of some \(u \) - \(x \) geodesic in \(G \). Therefore, \(d(u, v) < d(u, x) \), which is a contradiction. Hence \(f_r(G) \leq 1 \).

In view of Theorem 3.3, the following theorem gives a realization for the forcing restrained Steiner number and restrained Steiner number of a graph.

Theorem 2.18. For every pair \(a, b \) of integers with \(0 \leq a < b, b \geq 2 \), there exists an ached graph \(G \) such that \(f_r(G) = a a n d s_r(G) = b \).

Proof. Suppose \(a = 0 \). Let \(G = K_{1, b-1} \). Then by Theorem 2.13, \(f_r(G) = 0 \) and from Theorem 1.3, \(s_r(G) = b \). Now, assume that \(a \geq 1 \). For \(b = a + 1 \), let \(G = K_1 + C_{a-2} \) (\(a \geq 1 \)). By Theorem 2.15, \(s_r(G) = a + 1 = b \) and \(f_r(G) = a \).

For \(b \neq a + 1 \), let \(F_1 : r_1, s_1, t_1, u, v_1, r_2(1 \leq i \leq a) \) be a copy of the cycle \(C_a \). Let \(G \) be the graph obtained from \(F_1(1 \leq i \leq a) \) by first identifying the vertices \(v_{i-1} \) of \(F_{r-1} \) and \(t_i \) of \(F_1(2 \leq i \leq a) \) and then adding \(b - a \) new vertices \(u, z_1, z_2, \ldots, z_{b-a-1} \) and joining the \(b - a \) edges \(u t_1 \) and \(v_1 z_1(1 \leq i \leq b - a - 1) \). The graph \(G \) is given in Figure 2.4. Let \(Z = \{u, z_1, z_2, \ldots, z_{b-a-1}\} \) be the set of all end-vertices of \(G \). Let \(H_i = \{r_i, s_i\}(1 \leq i \leq a) \). First we show that \(s_r(G) = b \). By Theorem 1.1, \(Z \) is a subset of every restrained Steiner set of \(G \) and \(s_r(G) \geq \leq b - a \). Since \(S(Z) \neq V, Z \) is not a restrained Steiner set of \(G \). We observe that every \(s_r \) - set of \(G \) must contain exactly one vertex from each \(H_i(1 \leq i \leq a) \) and \(s_r(G) \geq b - a + a = b \). On the other hand, since the set \(W = Z \cup \{r_1, r_2, \ldots, r_a\} \) is a minimum restrained Steiner set of \(G \), it follows that \(s_r(G) \leq |W| = b \). Thus \(s_r(G) = b \).

Next we show that \(f_r(G) = a \). Since every \(s_r \) - set of \(G \) contains \(Z \), it follows from Theorem 2.8 that \(f_r(G) \leq s_r(G) - \mid Z \mid = b - (b - a) = a \). Now, since \(s_r(G) = b \) every minimum restrained Steiner set of \(G \) contains \(Z \), it is easily seen that every minimum restrained Steiner set \(S \) is of the form \(Z \cup \{c_1, c_2, \ldots, c_a\} \), where \(c_i \in H_i, (1 \leq i \leq a) \). Let \(T \) be any proper subset of \(S \) with \(|T| < a \). Then there is a vertex \(c_i(1 \leq i \leq a) \) such that \(c_i \notin T \). Let \(d_i \) be a vertex of \(H_i \) distinct from \(c_i \). Then \(S_i = (S - \{c_i\}) \cup \{d_i\} \) is a restrained set containing \(T \). Thus \(S \) is not the unique \(s_r \) - set containing \(T \) and so \(T \) is not a forcing subset of \(S \). This is true for all \(s_r \) - sets of \(G \) and so it follows that \(f_r(G) = a \).

REFERENCES

[8] J. John, M. S. Malchijah Raj, The Restrained Steiner Number of a Graph, (Communicated)
[9] M. S. Malchijah Raj, J. John, The Upper Restrained Steiner Number of a Graph, (Accepted)