Wavelet-Alienation Coefficient based Protection of Distribution System

Durgaprasad Bandaru, Abdul Gafoor Shaik

Abstract: Growth enhances the complexity in control of distribution networks which are progressing towards the vision of smart grids. Inclusion of non-conventional resource power generators affects in magnitude and flow directions of faults in the distribution system there by posing challenges towards protection of distribution system. A wavelet and alienation coefficients based algorithm described in this paper for electrical distribution network protection which is also connected with wind farm. The algorithm takes the current samples at selected nodes of the wind farm connected distribution system. From the collected samples of the current signals approximation coefficients are extracted using wavelet technique. A moving half cycle window is used to obtain alienation coefficients of the current signals which were approximated by wavelet technique. Using the WT (Wavelet transform) decomposition on the currents measured at selected nodes approximation coefficients are computed, which are used for acquiring the alienation coefficients to fault classification and identification. MATLAB Simulink is used for simulation of modified IEEE 13 bus test feeder system. Effectiveness of proposed technique examine for all possible shunt faults at every bus of test feeder system. Also the effect of wind speed variations and location of wind farm connection conditions are tested to evaluate the reliability of the technique.

Keywords—IEEE 13 Bus test feeder, Distribution network, wind based DG, protection, wavelet, alienation coefficients.

1. INTRODUCTION

Scarcity in conventional resources and concerns on global warming conditions has routed the generation of electrical power from non-conventional sources. Wind energy based power generation takes huge portion among the non-conventional resources. Advancements and improvements in control techniques of wind power based electrical generators enhanced the reliability electrical power by wind power[1]

In a wind farm connected distribution system there an increment in fault current magnitude and DG presents an extra wellspring of issue current, may build the absolute fault level inside the system, while conceivably modifying the size and bearing of the deficiency flows seen by explicit security transfers. The dedication of one single producing unit is commonly not tremendous, yet the all-out effect of many creating units can essentially influence issue flows and impact the movement of the overcurrent assurance arrange [2].

Distribution network which works with moderate voltage values, facing difficulties in charge, insurance and activity when renewable source power generators associates [4,5]. Problems of incorporated wind power based electrical generators to appropriation frameworks are inspected in different authors examines [4,9]. wind power based electrical generators composed of dissemination frameworks were in like manner contribute shortcoming flow gives a mind boggling sway on warm limit and security hardware [5,6]. Along these lines, insurance procedures which are used for power framework security not light about wind turbine generators are unsuitable about need in deficiency conditions [10]. Hence an explanation is required to determine every one of the issues, paying little mind to area, capacity and count of wind power based electrical generators group.

The effect of DG and resolutions have been exhibited in [11] An adoptable protection scheme presented by authors at [12-14] the creators recommend utilization of limiters of fault current (LFC), the researchers of [14]-[16] recommend utilizing versatile protection scheme. In [14] and [15] authors proposed a separate protection settings for with DG and without DG. In [16] authors recommended a plan to change overcurrent protection setting by dependent on the shortcoming magnitude and the DG affiliation stature. An answer which accommodates isolate assignment recommended in [10] and [17], specialists display way of clear flexible overcurrent assurance plot through two locale together—one for lattice related and isolation technique for movement may deal with the issue. The specialists [3,20] showed that proximity DG impacts the selectivity, affectability and operational events of current setting relays. Security methodologies, issue recognizing evidence strategies are discussed in [21-27]. Fault discovery and arrangement plans utilizing wavelet proposed by S. A. Gafoor, et al [6,30-32]. Masoud.M and et al. exhibited a distance coefficients system for security of transmission lines [7].

The majority of recommend flexible over current protection schemes in research study appear to focus on the answer for a particular security execution issue and ignores different parts of future systems that may affect execution. In this manner, these plans are to some degree restricted, as later on. Wavelet and signal correlation based method refers dissemble state of abnormal condition proposed in this paper. This procedure is neither relies upon size of the framework nor fault current extent. In this major part information extricated from the measured signals by utilizing wavelet instrument and likeness of wave structures cycle by cycle acquired utilizing alienation coefficients, which makes the
method strong in recognizing every single anomalous state of the system. Here onwards papers divided as, alienation and wavelet based strategy in segment 2, Details of used network in segment 3, fault identification and categorization in segment 4, contextual analyses in segment 5 and end comments in segment 6.

II. WAVELET - ALIENATION COEFFICIENTS

A. WAVELET TRANSFORM:
In separation of transient portion in the signals Wavelet Transform (WT) is a capable method. Diverse changes like DFT, FFT are examines the sign in just recurrence zone, while in wavelet uses different windows for different frequencies. Wavelet can be picked with altogether charming recurrence and time information. Wavelet transform estimations depend on, the scrabbling function \(\Phi (p) \) and the wavelet function \(\psi(p) \)

\[
(p) = \sqrt{2} \; h_k (2p - k) \tag{1}
\]

\[
\Box(p) = \sqrt{2} \; g_k \Phi (2p - k) \tag{2}
\]

The discrete successions \(h_k \) and \(g_k \) speak to discrete channels that comprehend every condition, where \(g_k = (-1)^k h_{N-1-k} \)

Such a significant number of sorts of wavelets are existing, as symlet, db(Daubachies), coif, haar and so on. Decision of mother wavelet changes with application.

B. ALIENATION COEFFICIENTS
Two signal \(x_1 \) and \(x_2 \) alienation coefficients are determined by expression as given.

\[
A = 1 - r^2 \tag{3}
\]

\('r' \) stands for the correlation coefficients of the two signals

\[
r = \frac{N_s (\Sigma x_1 x_2) - (\Sigma x_1) (\Sigma x_2)}{\sqrt{[N_s (\Sigma x_1)^2 - (\Sigma x_1)^2] [N_s (\Sigma x_2)^2 - (\Sigma x_2)^2]}} \tag{4}
\]

Estimation of alienation coefficients using approximation coefficients as follows.

\[
A_{ap} = 1 - r_{ap}^2 \tag{5}
\]

Where \(r_{ap} \) refers to successive half cycle correlations between \(x_{1, ap} \) and \(x_{2, ap} \) at similar instants.

\[
r_{ap} = \frac{N_s (\Sigma x_{1, ap} x_{2, ap}) - (\Sigma x_{1, ap}) (\Sigma x_{2, ap})}{\sqrt{[N_s (\Sigma x_{1, ap}^2 - (\Sigma x_{1, ap})^2)] [N_s (\Sigma x_{2, ap}^2 - (\Sigma x_{2, ap})^2)]}} \tag{6}
\]

\(N_s \) is half cycle window samples
\(x_{1, ap} \) = approximation coefficients of half cycle \(X1 \) at \(t_0 \)
\(x_{2, ap} \) = approximation coefficient of half cycle \(X2 \) which is with same polarity at previous cycle same time instant.

Two signals change is computed by alienation and obtained coefficients are known as alienation coefficients. It extends somewhere in the range of ZERO and ONE.
III. TEST SYSTEM DESCRIPTION

Test system considered for study shown in figure 3. Distribution network of 13 bus system is modified for the simulation study. Considered system is balanced three phase three wire system. Voltage of grid node maintained at 115kv at B650 and wind farm of 9MW is included to the network at B680. Details of the distribution network tabulated in Table 1.

![Fig. 3.IEEE13 network with wind farm](image)

IV. DETECTION AND CLASSIFICATION OF FAULTS

Considered test system simulated for 10-cycles time, in which initial 5 cycles under system, normal condition and remaining 5 cycles under abnormal condition. At every single bus of test feeder network, each of the ten shunt faults created. At every bus of the distribution network faults are simulated to set the threshold value (TH).

![Fig 4(a) approx coefficients of 3-ph currents for ph-g fault at node B684](image)

![Fig 4(b) For ph-g fault at B684 alienation coefficients](image)
At test feeder node B684 a 3-ph (LLLG) shunt fault is simulated. Measured three phase differential currents are decomposed for approximation coefficients as shown in Fig.5(a), at B650 and B680. Form the obtained approximation coefficients, alienation coefficients are computed and compared with threshold value (TH) as presented in Fig.5(b). From Fig.5 (b) it is clearly observed that a 3-ph fault (LLLG) occurred on the system and it also reveals that fault occurred on all three phases.

![Fig 5(a) differential currents for ph-ph-ph-g at B684 node](image1.png)

![Fig 5(b) Alienation coefficients for ph-ph-ph-g at B684 node](image2.png)

From Figs.5 (b) it is clearly observed that a 3-ph fault (LLLG) occurred on the system and it also reveals that fault occurred on all three phases.

At test feeder node B684 a line to line (LL) fault is simulated. Measured three phase differential currents are decomposed for approximation coefficients as shown in Fig.6(a), at B650 and B680. Form the obtained approximation coefficients, alienation coefficients are computed and compared with threshold value (TH) as presented in Fig.6(b). From The Fig.6 (b) it is clearly observed that a ph-ph-g occurred on the system and it also reveals that fault occurred on phase-A and phase-B.

![Fig 6(a) approx coefficients of 3-ph currents for ph-ph fault at node B684](image3.png)

![Fig 6(b) For ph-ph fault at B684 alienation coefficients](image4.png)

From figures 6(b) and 7(b) it clearly observed that both figures indicates occurred fault is in between two phase but it is not clearly discriminates that occurred fault is ph-ph or ph-ph-g fault. Hence alienation coefficients alone unable to make the discrimination between the LL and LLG faults. In general ground faults have the neutral current which is 10% of the phase currents. By computing the ground current and comparing as shown in the figure. 7(c). clearly it is represented that LLG fault has appreciable ground current compare to LL fault which was used for discrimination of ph-ph and ph-ph-g faults.
Fig. 7(c), it is clear that the I_0 current is more for ph-ph-gcompare to ph-ph shortcoming. In this manner, ph-ph deficiencies can be recognized from ph-ph-gblames by contrasting their flows I_0.

V. CASE STUDIES

A. VARIATION OF FAULT LOCATION:

Disturbance occurring bus location will alter level of current value and current flow directions, hence effectiveness of proposed algorithm also need to test for different fault locations. Fig. 8 outlines variety of fault files of three stages for various shunt deficiencies. From Fig. 8a it is apparent that deficiency list of ph-‘a’ is constantly more noteworthy than the limit and those of ph-‘b’ and ph-‘c’ are not exactly the edge if there should be an occurrence of ph-‘a’ to ground issue, for all the shortcoming areas. Figs. 8b and c demonstrate that the issue list of ph-‘a’ and ph-‘b’ are more prominent than the limit and that of ph-‘c’ is not exactly the edge if there should arise an occurrence of ph-‘a’ and ph ‘b’shortcoming and stages ph-‘a’ and ph-‘b’ to ground flaw, for differing deficiency areas. From Fig. 8d, for threestage flaw, it very well may see issue files of all the three stages are more noteworthy than limit, for various issue areas.

B. Variation of fault incidence angle:

Level of current value and current flow directions also get change by Fault incidence angles (FIAs). Angle of fault occurrence varies from 0° to 150° with 30° shift and tested the proposed technique. Figure. 9 displays deficiency list variety in fault occurrence angles for different issues. If there should arise an occurrence of ph-‘a’ to ground shortcoming, the flaw record of ph-A is constantly more the limit and those of ph-‘b’ and ph-‘c’ are not exactly the edge, for different in fault occurrence angles, as appeared in figure 9a. figure 9b and c delineate deficiency record of ph-‘a’ and ph-‘b’ are more noteworthy than the limit for ph-‘a’ to ph-‘b’ shortcoming and ph-‘a’ and ph-‘b’ to ground issue, individually. Figure 9d shows the deficiency files of three-phases than edge in case of a three-stage shortcoming.
Wavelet-Alienation Coefficient based Protection of Distribution System

C. Variation in Wind Speed:

Wind speed variety will changes the breeze ranch age control which influences the exhibition of the assurance calculation. Henceforth the strategy proposed tried for various breeze speed conditions from 9m/s to 21m/s in ventures of 3m/s. Results showed in figures 10(a), 10(b) and 10(c) are for various flaws at Bus 632 with varieties in wind speed from 9m/s to 21m/s. Here it clear that the proposed method not influenced by the breeze speed varieties in separating the strange condition for a fault.

D. Change in Connected Wind Farm Capacity:

Change in capacity of connected wind farm will likewise influence the exhibition of the insurance calculation. Thus the method proposed tried for various breeze farm generations of 1.5MW to 9 MW in steps of 1.5 MW. Outcomes pictured in figures 11(a), 11(b) and 11(c) are for different faults with variations in wind farm generations. Figures show the robustness of the proposed method is differentiating the abnormal conditions even the connected wind farm changes it generating capacity.
E. WIND FARM CONNECTING LOCATION:

The location of wind farm connection to the distribution system is also affects the fault current levels and fault paths, hence the technique also tested for wind farm connection at different distribution bus locations B680, B652, B611, B675, B646, B671. Figures 12(a), 12(b) and 12(c) indicates the change of fault index for single phase to ground, phase to phase and 3-ph faults respectively. Figures reveals the effectiveness of the technique in discriminating abnormal condition.
VI. CONCLUSION

Suggested strategy was effectively tried to detect and classified all the types of faults in a wind farm connected distribution system. Distinguishing proof and arrangement of faults have been accomplished utilizing a wavelet-alienation coefficient s of differential currents. Fault identification was successfully done in half cycle data of current samples. Robustness of technique was also tested with location of change in fault, fault incidence angle, wind speed, wind farm connected location and wind farm generating capacity for all types of shunt faults. All the results obtained are reveals reliability of technique in discriminating the abnormal condition of the system. It has been established wavelet-alienation based technique not effected by change in location of fault, angle of fault inception, wind speed, wind farm connected location and wind farm generating capacity in view of protection of the distribution system. The technique observed to be quick, exact and dependable for assurance of distribution system in presence of wind based DGs.

REFERENCES:

[29] Bhuvnesh Rathore, Abdul gafoor shaik “Fault detection and classification on transmission line using wavelet based alienation algorithm” ISGT-Asia 2015, At Bangkok, Thailand

