Advancement in Protection Systems in a Thermal Power Plant

Rangaswamy.T.R, Prakash.D, Jayalakshmi.V.

Abstract: Protection and interlock systems is a major study and research topic involved in a thermal power station to safeguard the equipment of boiler, turbine and generator. Main objective of the paper is to demonstrate all the protections and interlocks available for Boiler, Turbine & Generator and show how the entire plant is protected from abnormal conditions. Unnecessary tripping of thermal plant leads to loss of Generation, long maintenance and high cost. This paper will be beneficial for the fresher’s and trainee engineers entering into thermal power station to gain knowledge of all protection system involved in a thermal power plant.

Keywords: Thermal, PowerPlant, Turbine.

I. INTRODUCTION

In order to achieve more economical, effective and reliable activities, the entire system must be correctly regulated for all real-time associated industrial activities. The process in which the assembly of a number of interconnected measuring and control instruments for the measurement, analysis and control of electrical and non-electrical physical quantities is referred to as industrial automation. There are different types of controls for industrial automation, such as electrical, electronic and mechanical.[1-5]

The method of measuring and controlling different amounts in sectors by using different industrial instruments is referred to as industrial instrumentation. In order to control any amount, it is mainly necessary to measure that specific amount. The amounts used in the measurement industry include fluid pressure, fluid flow rate, temperature, concentration, electrical present, electrical voltage, etc. Thus, after the measurement of the required amount, the measured values are transferred for indication or calculation or control purposes. In an automatic control operation, the quantity can be controlled by the control signal sent to the control device by the computer. In particular, the control systems are electric motor, control valve, etc. Most sectors are the Automated Distributed Control System (DCS). Measurement & Control consists of sensors or transducers or input gadgets, controllers or processors, transmitters and actuators or yield contraptions. Instrumentation wires is utilized for looking, physical wholes, for example, stream, level, weight, temperature, etc. Yield instrumentation wires control gear, for example, valves, controllers, circuit breakers and moves. These are designed to control the required output variable, offering control capability either remotely or automatically. These shall be regarded as initial or final control systems.

Interlock and the security scheme will take care of the safety of the machinery and of the human being.[6-9]

II. THERMAL POWER PLANT PROTECTION SYSTEM

Functionality of the protection system Boiler journey: stops fuel from being fed to the furnace and removes fuel from the boiler and prevents any explosive situation from continuing.

Turbine Trip: Close all steam intake valves (ESV, GOV Valves) to stop steam intake to guarantee turbine coasts down and Open all steam intake lines upstream / downstream valves to avoid accumulation of water that may enter the turbine. Generator Trip: Opens CB Connection Generator to Grid from defective generator and opens Field Circuit Breaker.

FSSS (Furnace Safeguard Supervisory System) is designed by using many safety interlocks and complex logics which ensures the execution of a safe, orderly firing sequence during the Startup and Shutdown of Fuel Firing Equipment. FSSS i's designed in accordance with the below listed guidelines,[10-15]

1. National Fire Protection Association (8501 /8502 or others)
2. Industrial Risk Insurers (IRI)

This FSSS scheme offers safety interlocks to safeguard against future emergency scenarios in the case of a malfunction of fuel-fired equipment and related air systems. FSSSS is usually intended to conduct the following tasks:

• It allows fuel firing only after it gets a satisfactory Furnace Purge Complete Signal.
• It allows starting of any fuel firing equipments, if certain interlocks and permissive are satisfied.
• It monitors & controls the correct sequence start-up and shutdown and provides continuous feedback to the operators.
• It ensures that certain safety inter-lock conditions remain satisfied during operation of fuel firing equipment.
• Provides flame surveillance when fuel-fired equipment is in service.
• Initiates an MFT (Master Fuel Trip) when the working circumstances are abnormal.

Revised Manuscript Received on August 22, 2019.

Rangaswamy.T.R, Assistant Professor, Department of Electrical & Electronics Engineering Bharath Institute of Higher Education and Research, Chennai, India . trswamy49@gmail.com

Prakash.D, Assistant Professor, Department of Electrical & Electronics Engineering Bharath Institute of Higher Education and Research, Chennai, India prakashacademics@gmail.com

Jayalakshmi.V, Assistant Professor, Department of Electrical & Electronics Engineering Bharath Institute of Higher Education and Research, Chennai, India . Jayalakshmiv.eee@gmail.com

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication
FSSS also includes the following operational tasks:
• Supervision of the furnace purge.
• Secondary Air Damper Modulation / Control, On / Off Control and Control. Light oil on / off control and oversight.
• Heavy oil on / off inspection and oversight.
• Pulveriser / Coal Mill and Feeder on and off control and oversight.
• Intelligence of the flame scanner and control of the procedure.[16-20]
• Overall protection for Boiler flame failure.
• Protection of the boiler journey.

BOILER PROTECTIONS
• Steam Drum level is very high / very small
• Furnace pressure is very high / very small
• All FD FAN fans have stopped.
• All ID FAN supporters have stopped.
• Total boiler air flow < 30 per cent;
• Furnace flame loss: scanner sense loss of all flame
• Loss of both scanner air fans
• Fuel loss: All fuel tripped (heavy oil OFT, light oil OFT, all coal Pulverizers tripped
• All air pre-heaters stopped
• All BFP stopped
• Re-heater protection trip
• Loss of unit 220 V DC / 24V DC / 110V AC power supply
• Manual MFT: the two gets of the MFT squashed by the authority at a relative minute • Purge Interlock shields water from entering an unfired all the novel in association with smoking until the stove has been completely washed of water. Low Air Flow Interlock or Fan Interlock The fuel is done when the breeze stream or gobbling up air ventilator or blower is lost. [21]
• Low Fuel Supply Interlock The fuel is done in setting on a goof of motor store that would by somehow or another outcome in lacking fire conditions.
• Loss Flame The interlock of all batteries is butchered when the fire is lost in the stove, or the gas to the individual burner is executed when the fire is lost to that burner.
• Fan Interlock Stops compelled draft on the loss of an induced fan.
• Low Water Interlock (Optional) Removes fuel at low water level in the boiler drum.

III. TURBINE PROTECTIONS
Turbine Bearing Oil Pressure Low
• Vacuum Condenser Low
• Condenser Level High
Hp Exhaust Temperature High
• 3 Out of 4 Governor Valves Tripped
• 2 Out of 2 Intercept Valves Tripped
• Ehg Fault
• Thrust Wear High
• Stator Coolant Flow Low
• Main Steam Pressure Low
• Main Steam Temperature Low
• MFT Operated/86u Operated

IV. GENERATOR PROTECTION
As generators and transformers are the key bits of the criticalness plot, it is as necessities be vital to understand the most fit structure to ensure transformers and generators. These are the going with structures (ANSI codes) that we use to shield transformers and generators from reshapings: generator differential referencing (87/G1): security is furnished with related, character blowing gushing present trades. The trades will have a get mix of 10 to 40 percent of 5A and will have a fitting stabilizer to guarantee explanation against inside issues. The trades will be tuned to the central rehash of dispatch of the sounds made by the CT sparkling..

Generator-transformer differential security (87/GT1): The generator-transformer moves must be of a lacking sharp percent proclivity sort with consonant control and have CT-limit building equipment. The hand-off ought to have every single standard major to make it injured for issue current, polarizing inrush present and sporadic charging inrush current during obliged time task over voltage conditions. Issue transformer differential accreditation unit (87/TA): the level of getting a charge out of differential trades utilized close to the affirmation dealing with contraposition. The hand-off won't be utilized for charging inrush current. High set brief over present trades will be given in get-together with the past hand-off, set for charging inrush current, for silly security from inside reshapings.

Generator Stator Earth Defect Protection (64GI): Stator Earth Defect Protection contains a zero-party voltage hand-off related with the heat delta bowing of the generator voltage transformer. The accreditation will work just to trigger a period surrendered sign and the hand-off will from this time forward be dependably paid squeezing character to at 110V. T Between turn generator protection(87TG): accreditation by structures for an undulating over-current hand-off. The trade will join beating back structures to render it hurt for third music. The trade will have a sensible structure to cover 20-50 percent of the generator current.

Generator rotor earth need security (64-1,64-2): the standard rotor earth mutilation of the generator is seen by structures for a superimposed unequivocal dc proclivity on the field winding. The DC getting a need out for will be of a firm base on that the necessities at any phase in the winding are checked by the structures. The trade will like way tie the voltage experienced. Second rotor earth bowing security for generators is about given.

Field endorsing loss of generator(40 G): this security will be yielded in a particular time of the fixed impedance type. The trades will have impedance structures to cover the standard impedance get-together of mammoth turbo generators. Generator Backup Protection(21 G): the generator post trade will be of three stage impedance type for one zone security, together with the goliath extra trades and two stage clock for one zone clarification. Generator under power and against motoring security (67-1G, 67-2G): the improvement up transformer back up earth mutilation demand current trades will be of IDMT properties. One of the two trades will be set with higher time dial setting to give second time of security. Security from over-bother generator (51 G): one over present hand-off is given to trigger an over-burden alert. The trade will have a high reset degree and a standard than standard strong warmth rating. [19]
Seeing over voltage generator (59 G): sensible overvoltage moves ideally with volt/cycle highlights will be given. Post accreditation for extra transformer unit (50T1A): Two brief over-current trades with an outside DC clock are given for help security for the 6.6 kV transport bar unit.[20]

Fig.1Circuit issue security (95 G): This plans will imagine the improvement of all voltage circuit protections in the case of failure of the generator fuse.Lockout relays (86G and 86GT):

V. BASIS OF TRIPPING CLASSIFICATION

The tip structure for the generator depends upon the major for withdrawal of the generator on the grounds of the sort of fault. For instance, there are some faults like Generator Differential Protection that call for an instant trip of Generator Breaker without delay, while there are some faults like Loss of Excitation, Rotor Earth Fault, etc. that do not call for an instant trip of Generator.

Class-A1 Trip: Protections for necessities the generator that require moment control are amassed under this Class-A1. There is a goliath arrangement of the twistings that are held in this class. They’re as showed up by the going with:
(a) Generator Differential Protection
(b) 100 percent Stator Earth Fault Protection
(c) Generator Over Voltage Protection
(d) Dead Machine Protection
(e) 95 percent Stator Earth Fault Protection

Class-A2 Trip: Protections for issues in the generator that don’t require minute constraint are amassed under this Class-A2. The turbine is first spellbound and the generator is permitted to run utilizing got steam in the turbine. See there is some need the point of view side, for example in the steam cycle, under this condition the turbine will be squashed first, while the generator will keep running utilizing got steam until the vexed power hand-off works. Generator Circuit Breaker is broken when talk power is begun. Routinely, the Loss of Excitation and the Rotor Earth Fault of the Generator are held in this class. These checks will be given up when worked by the Generator Circuit Breaker, Field Class-C Trip: The fault protections / abnormal conditions in the grid that call for the Grid Generator to be disconnected are grouped under this Class-C. In this situation, the generator is separated from the grid by opening the appropriate breaker, i.e. Generator HV side Breaker Transformer. Bear in mind that only the Generator is isolated from the grid in this situation. As a result, Generator remains to supply Station loads (also known as house loads). Such a system where the generator operates on house load at decreased energy is known as Generator Islanding. Everything considered, the going with accreditations of the generator are kept up under this class:
(a) Unbalance or Negative Sequence Protection
(b) Backup Impedance Protection
(c) Under Frequency
(d) Over Frequency
(e) Pole Slipping Protection

BoilerTrip: Stops fuel feed to Furnace
q Purpose – Remove fuel from Boiler and prevent any explosive situation from continuing Turbine Trip: Close all steam intake valves (ESV, GOV Valves) q Purpose – Stop steam intake
VI. CONCLUSIONS
This article provided the current status and overview of interlocking thermal power plant and security systems. The interlocking and security system shall be used to guarantee the safety of the equipment and staff as well as the stable operation of the power plant. The security scheme shall be created for the automatic operation of the machinery with or without delay. This document will benefit fresher and trainee technicians entering the thermal power station in order to obtain understanding of all the security systems engaged in the thermal power plant.

REFERENCES

AUTHORS PROFILE

Rangaswamy.T.R Assistant Professor, Department of Electrical & Electronics Engineering Bharath Institute of Higher Education and Research, Chennai, India.

Prakash.D Assistant Professor, Department of Electrical & Electronics Engineering Bharath Institute of Higher Education and Research, Chennai, India.

Jayalakshmi.V. Assistant Professor, Department of Electrical & Electronics Engineering Bharath Institute of Higher Education and Research, Chennai, India.