Capacity Side of the Point Evaluation Utilizing Programming Item Estimation

Shanmugapriya.K, Mary Linda.I, Geetha.C.

Abstract: In programming industry FPA is utilized for assessing the highlights of programming ventures. The highlights are cost, span, exertion and so forth. The product achievement elements are quicker, better and less expensive. In programming improvement process, the achievement depends on undertaking arranging and estimation. Estimation is the determined guess of the aftereffect of explicit issue. It lead significant job is task arranging. One of the real estimation and measuring procedure is FPA. It is useful for evaluating the highlights of created ventures. In any case, it isn’t precise for evaluating the highlights of activities to be created. So here the idea of similarity estimation and PERT are included with FPA and present another method EFPA. It can give progressively precise appraisals. It is valuable for the product business for assessing the highlights of programming.

Keywords: FPA- Function Point Analysis, EFPA- Extended function point analysis.

I. INTRODUCTION

Programming designing is a methodical creation and support of programming that is created and adjusted on time with in cost estimation. Viable estimation based arranging is to be give achievement in programming improvement. The product improvement procedure comprises of examination, structure, coding, testing and support. In examination stage catch all necessities, to build an underlying plan of action and to finish the arrangement to build up the undertaking. The arranging procedure begins with an appraisal of the limitations (required conveyance date, staff, generally speaking spending plan and so on) influencing the undertaking. This is done in combination with an estimation of undertaking parameters, for example, its structure, size and circulation of capacities.[1][2]

II. PROJECT PLANNING ALGORITHM:

1. Set up the test requirements.
2. Make beginning checks of the test parameters.
3. Characterize task achievements and expectations.
4. While adventure has now not been finished do the accompanying advances generally dropped the circle

I. Draw up errand time table.
II. Initiate sports in venture with the timetable
III. Review venture advancement.
IV. Revisae assessments of endeavor parameters
V. Update the mission plan
VI. Renegotiate mission imperatives and expectations.
VII. If (issue ascend) at that point Start specialized evaluation furthermore, plausible update

Endif
End Loop. The above expressed undertaking arranging calculation states programming estimation is significant movement. The disappointment of numerous enormous programming activities featured the issue of lack of common sense and estimation.

III. ACTIVITIES DURING SOFTWARE PROJECT PLANNING

The major activities in project planning stage is Estimation, Requirements capturing, Project scheduling. The below figure shows these activities.

(Fig 1. Activities during software project planning)
IV. ESTIMATION BY ANALOGY

Bhom portray this estimation as “similarity estimation”. This depends on estimation strategy depicted by Ray Wolverton that attempts to distinguish similarities and contrasts between undertakings [1974]. Quantitative similaresimilarity strategies are straightforward approach to change authentic qualities. Specialists measure how much distinction the estimation of new item identified with the estimation of known article. To assess the distinctions specialists can utilize the Delphi technique, past experience or some other strategy. Apply the assessed contrasts additively or multiplicatively. This two similarity methods are an improvement over the fundamental Delphi procedure.[3-15]

A. Additive analogy:
The estimator includes or subtract limited quantity from a known (recorded) worth to compute the evaluated an incentive for the new article. Randall Jensen portrays a comparative system called "relative correlation"

B. Multiplicative analogy
Proportion scaling applies to an amount for estimation. Decide the rates of each factor utilizing PERT or Delphi strategy.

C. Algorithmic analogy
This technique has fundamental activities:
1. Define the technique
Define a facts set. Define degree for every characteristic and for the amount.
Collect facts set for multiple existing times
Validate the information
Define an algorithm to degree the degree of similarity among times
Define an set of rules to pick out the closest neighbors for the brand new instance.
Define an set of rules to calculate the price of the new instance.[25-30]
2. Apply the method
Specify the characteristics of the new item.
Locate and choose the desired numbers of nearest neighbors. Combine the values from the associates to get the price to be estimate.

Adrian Cowderoy and Joh Jenkins depicted one of the primary organized methodologies for utilizing analogies for estimation. They carefully representing programming or framework estimation; the analogies apply to objects in an equivalent issue area. This is all the more appropriately called case based thinking.

V. PERT(PROGRAM EVALUATION AND REVIEW TECHNIQUE)

Lockheed and US Navy built up this strategy in late 1950's. Lawrence Putnam and Anne Fitzsimmons connected it to programming in 1979. Saucy method utilizes extra data from the estimator to create a superior gauge. The estimator gives three evaluations to the amount of intrigue.

Using these three values PERT technique calculates the expected value E and standard deviation σ

$E = (L + 4 * M + H) / 6$

$\sigma = (H - L) / 6$

VI. FPA(FUNCTION POINT ANALYSIS)

Function count:
Rather than line to discover number of capacities in a program for assessing cost, improvement time, staff and exertion. FPA is a procedure used to assess programming utilizing capacity tally.
FPA measures usefulness from client’s perspective. That is based on what the client demand and gets consequently from the framework. The equation for computing capacity point is UDP is determined dependent on the useful units and weight factors. UFP equivalents to entirety of result of practical units and weighting factors. The practical units are Outer Input(EI), External output(EO), External Inquiry(EQ), Internal sensible files(ILF), External legitimate files(ELF).The weighting components are low normal and high.The following table shows functional units and weighting factors.

(Table 1: functional units and weighting factors)

<table>
<thead>
<tr>
<th>Functional Units</th>
<th>Weighting factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOW</td>
</tr>
<tr>
<td>EI</td>
<td>3</td>
</tr>
<tr>
<td>EO</td>
<td>4</td>
</tr>
<tr>
<td>EQ</td>
<td>3</td>
</tr>
<tr>
<td>ILF</td>
<td>7</td>
</tr>
<tr>
<td>ELF</td>
<td>5</td>
</tr>
</tbody>
</table>

CAF is equal to

$0.65+0.01*\sum_{i=1}^{14} F_{i}$

There are 14 adjustment factors
The complexity adjustment factors describe 14 system characteristics. They are
- Data Communication
- Distributed data processing
- Performance
- Heavily used configuration
- Transaction rate

Using function points we can assess productivity, estimate cost, quality and documentation. It may compute[16-19]

VII. PROPOSED SYSTEM

Existing function point analysis is good for estimating the features of developed software. But it is not accurate for estimating the features of software to be developed. Any effective estimation past experience and historical information are necessary. Algorithmic Analogy Estimation stated the same for estimation.
So here the combined technique FPA and Algorithmic Analogy called EFPA is suggested for estimating the features of software to be developed.[20-25]

VIII. INITIAL SCENARIO FOR THE PROPOSED SYSTEM

1. Maintain the database for completed projects and their features.

<table>
<thead>
<tr>
<th>Name</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EO</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EQ</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ILF</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ELF</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CAF</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UFP</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FR(Size)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2. If the new project is similar to the projects in the existing database then choose the features of existing project.

3. Analyze the Features of new and existing project (EI, EO, EQ, ILF, ELF)

4. Choose the most likely value of feature by using PERT technique or by using additive or multiplicative analogy.

5. Validate the data

6. Calculate CAF, UFP and FR.

7. Calculate cost, duration and other features.

IX. CONCLUSION

Implementation of FPA is the good solution of finding features of the project to be developed. The past experience and historical information will give effective inputs for determining the features of the software. So it provides accurate estimates.

REFERENCES

AUTHORS PROFILE

Shanmugapriya.K Assistant Professor, Department of Computer Science and Engineering, Bharath Institute of Higher Education and Research, Chennai, India

Mary Linda.I Assistant Professor, Department of Computer Science and Engineering, Bharath Institute of Higher Education and Research, Chennai, India

Geetha.C. Assistant Professor, Department of Computer Science and Engineering, Bharath Institute of Higher Education and Research, Chennai, India