Novel EBG Structure BPF for UWB system

D. Sridhar raja , B. Kalaiselvi, T. Vijayan

Abstract: This paper discusses about application of Electromagnetic Band-gap structure (EBG) application in design of microstrip band pass filter(BPF) in ultra wide band(UWB) frequency. Here to obtain improved pass-band region and good out of band region a single Electro Magnetic Band-gap structure (EBG) cell is used. The simulation of the filter is done using advanced design system software (ADS), the obtained result is satisfactory ,in addition to the performance of the filter the size of overall filter is reduced in size which can be used in many compact handheld devices. [19],[20],[21]

Keywords : Band-pass filter, electromagnetic band-gap (EBG), ultra wideband (UWB), wideband filter.

I. INTRODUCTION

In present day correspondence frameworks ultra wide band (UWB) recurrence is utilized progressively due to in wide band nature application in transmission and getting information for its speed. This is because of the consent conceded by Federal Communications Commission (FCC) recurrence band 3.1 to 10.6 GHz for business correspondence applications in February 2002[1].therefore in any correspondence framework band pass channel assumes a significant job, likewise structuring a conservative band pass channel turns out to be additionally encouraging are in remote minimal handheld gadgets. The other fundamental parameters taken to thought in structuring a band-pass channel are low addition misfortune over the whole pass band recurrence which is 3.1 to 10.6 GHz and great return misfortune in stop band recurrence. Over numerous years numerous new techniques had been actualized in acquiring the previously mentioned parameter.in this strategy UWB channel present deceptive band, this undesire parameter.in this strategy UWB channel present deceptive band, this undesire parameter. From condition it demonstrates that so as to accomplish progressively reduced electromagnetic band-hole (EBG), structure, its capacitance C and inductance L ought to is expanded. In the EBG structure strategy , the inductance L can’t changed if thickness of dielectric and type dielectric material is picked. The main strategy is to build the estimation of the capacitance C. [13], [15] .

II. FILTER THEORY

In planning any channel, beneath referenced are significant parameters

1. Pass data transfer capacity
2. Stop band constriction and frequencies
3. Input and yield impedances
4. Return misfortune
5. Insertion misfortune
6. Group postponement

The parameters in over the abundancy reaction given as far as the addition misfortune Vs recurrence attributes are considered in reenactment. [1],[3],[5]

III. PROPOSED EBG STRUCTURE.

The electromagnetic band-hole (EBG), structure has a wide band-hole in nature. The inductor L is because of the present coursing through the associated by means of. The hole between conductor sides of two adjoining cells offers ascend to equal capacitance C. This two dimensional occasional LC system is acquired, which results to recurrence band-hole and the inside recurrence of band-hole to decide utilizing recipe

\[\omega = 1/\sqrt{LC} \]

IV. THE PROPOSED ELECTROMAGNETIC BAND-GAP (EBG), UWB FILTERS

Fig 1.Proposed EBG structures

Revised Manuscript Received on August 22, 2019.

Sridhar Raja D Department of EIE, Bharath Institute of Higher Education and Research, Tamilnadu, India. Email: sridharraja.eie@bharathuniv.ac.in

B. Kalaiselvi, Department of EIE, Bharath Institute of Higher education and research, Tamilnadu, India. Email: kalaiselvi.eie@bharathuniv.ac.in

T. Vijayan, Department of EIE, Bharath Institute of Higher education and research, Tamilnadu, India. Email: vijayan.eie@bharathuniv.ac.in

Retrieved Number: F11350886S219/2019©BEIESP
DOI:10.35940/ijeat.F1135.0886S219
The proposed UWB band pass channel is structured and reenacted utilizing ADS reproduction programming. The band pass channel is planned with thickness 0.635 mm on a RT/Duroid substrate which has the dielectric steady 10.2. The schematics of uni-planar minimal EBG (UC–EBG) structure are appeared in fig 2. The inside recurrence of 6.85 GHz is gotten by the bury computerized coupled lines. [8],[10] [12]

ultra wide band locale, likewise with great out-of-band dismissal in stop-band district. By utilizing this proposed the Electromagnetic Band-hole (EBG) structure channel generally size is decreased which will be appropriate for smaller remote gadgets. The outcomes been reenacted utilizing advance plan frameworks Momentum test system programming, the future work should be possible on various EBG structures and the reaction in channel plan. [7],[9] [11]

REFERENCES

AUTHORS PROFILE

Sridhar raja D, Assistant Professor, Department of EIE, Bharath Institute of Higher education and research, Tamilnadu, India.

B.Kalaiselvi, Assistant Professor, Department of EIE, Bharath Institute of Higher education and research, Tamilnadu, India.

T.Vijayan, Assistant Professor, Department of EIE, Bharath Institute of Higher education and research, Tamilnadu, India.