Abstract: The fundamental goal of this proposal is to contemplate and examine the little signal soundness of the power framework associated with wind generators, as the power age utilizing wind generators has picked up significance in the ongoing days.

Here, direct drive perpetual magnet synchronous generator is considered in the investigation, and the little sign model is inferred to survey the little unsettling influence soundness. The eigen esteem examination explores the dynamic conduct of intensity framework under various modes. Along these lines, by utilizing eigen esteem investigation, the connection between the modes and the state factors are gotten. In this manner by fluctuating the controller parameters their effect on the eigen esteems are considered. The outcome demonstrates that the framework soundness can be improved by appropriate tuning of both generator side and matrix side converter controller parameters. [1],[3],[5]

Little sign model is produced for a matrix associated PMSG based WECS. Eigen esteem examination is performed for 3 machine nine 9 transport framework utilizing MATLAB/SIMULINK.

Keywords:MATLAB,power,generator

I. INTRODUCTION

The accessibility of electrical vitality is a need for the working of present day social orders. The vitality utilization is expanding tremendously as of late, because of enormous industrialization. The dangers of lack of fossil issues and their consequences for the climatic change accentuation the utilization of exchange asset (sustainable power source). The principle points of interest of power age from sustainable sources are the nonattendance of unsafe discharges and interminable accessibility of the crude material for transformation. [2],[4],[6]

The different accessible inexhaustible assets are sun powered, hydro, wind and so on. The age of electrical power from wind homesteads is growing quickly with overall introduced limit. As of now India stands fifth in the generation of power from wind cultivates after China, USA, Germany, and Spain. The introduced limit in India is 16,000 MW.

In addition, of its bit of leeway wind vitality age additionally has its weaknesses, for example, multifaceted nature, cost, and flimsiness of wind speed. The cost detriment is decreased by endowments from Government as they are probably going to advance the green power age. Then again, cost of wind power is moderately lower when contrasted with other sustainable power source assets.

The conduct of intensity framework is for the most part dictated by the conduct and collaboration of generators associated with it. At the point when the infiltration of wind age builds its impact on power framework likewise increments. This prompts cautious investigation of dependability of intensity framework with wind generators. In this proposition, the impact of matrix associated variable speed wind vitality change framework on the soundness of intensity framework is contemplated. [7],[9],[11]

II. MODELLING OF POWER SYSTEM COMPONENTS FOR STABILITY ANALYSIS

Dynamic model of matrix associated wind vitality transformation framework is required to accomplish learning about progressing change in the framework because of expanding wind vitality entrance. This part manages the numerical demonstrating of intensity framework comprising of differential and logarithmic conditions speaking to the models of framework segments including synchronous generators, loads. [8],[10],[12]

A. WIND TURBINE MODEL

The power extracted from the wind is given by,

\[T_s = \frac{\alpha_4 V^3 C_p}{2 \omega_s S_b} \] \hspace{1cm} (2.1)

\[P = \frac{\alpha_5 R}{T} \] \hspace{1cm} (2.2)
ANALYSIS OF THE SMALL SIGNAL STABILITY OF THE POWER SYSTEM CONNECTED WITH WIND GENERATORS

A general functional representation of C_P is given by Lubosny (2003) as,

$$C_P = C_1 (2 \beta - C_1) e^{-C_1 \lambda}$$ \hspace{1cm} (2.3)

Where,

$$\lambda = \frac{1}{\beta + 0.082} - \frac{0.035}{\beta^2 + 1}$$ \hspace{1cm} (2.4)

C_1 to C_6 are constants. The C_P versus λ curve is provided by the manufacturer. The constants C_1 to C_6 are computed for particular turbines using the procedure given by Heier (1998).

B. MODEL OF SYNCHRONOUS GENERATORS

The differential equations of synchronous generators

$$\frac{d\delta}{dt} = \omega_s - \omega_m$$ \hspace{1cm} (2.5)

$$\frac{2H_s}{\omega_s} \frac{d\omega_m}{dt} = T_{mi} - T_e - D_1(\omega_m - \omega_s)$$ \hspace{1cm} (2.6)

$$T_d \frac{di_q}{dt} = -E_{qi} - (X_{di} - X_{qi})I_{di} + E_{fdi}$$ \hspace{1cm} (2.7)

$$T_{ei} = E_{qi} I_{di} + E_{di} I_{qi} + (X'_{qi} - X'_{di})$$ \hspace{1cm} (2.8)

The stator algebraic equations are represented as follows

$$E_{di} - V_i \sin(\delta_e - \theta) - R_s I_{di} + X'_{qi} I_{di} = 0$$

$$E_{qi} - V_i \cos(\delta_e - \theta) - R_s I_{qi} - X'_{di} I_{qi} = 0$$ \hspace{1cm} (2.9)

C. MODEL OF INDUCTION GENERATOR

The enlistment generator is spoken to by methods for surely understood third request model. The stator homeless people are ignored, and adjusted activity of the enlistment generator is expected. The enlistment machine model includes two rotor windings on the d and q tomahawks. This, thus, suggests two state factors on the tomahawks that characterize the electric drifters of the rotor. Utilizing again generator flow show, the electric torque of the acceptance machine is

$$T_{ei} = E_{qi} I_{di} + E_{di} I_{qi}$$ \hspace{1cm} (2.12)

The dynamic response of the electrical states is described by the differential equations

A squirrel-confine enlistment machine associated with an AC power wellspring of fitting voltage can work either as an engine or as a generator. The terminal voltage applied to the machine produces slacking charging current, which thus brings about the pivoting attractive field inside the air hole for both motoring and creating activity. At the point when the engine is stacked, current streams in shortcircuited rotor because of the rotor EMF and the engine keeps running at sub-synchronous speed. [13], [15], [17]

At the point when the acceptance machine keeps running at super-synchronous speed, a voltage is incited in the rotor in stage resistance to the EMF instigated as a result of inversion of relative speed. The part of the stator current, which adjusts the rotor MMF, likewise turns around. The stator current presently comprises of polarizing present as in the past and a segment in stage restriction to the stator applied voltage. In this manner the machine turns into an acceptance generator with outside excitation. The acceptance generator can be spoken to by the notableproportional circuit appeared in Fig

![Fig 2.1 Steady state equivalent circuit of induction generator](image)

From Fig2.1, the current I_1 can be written as,

$$I_1 = \frac{\nabla}{(R_s + R_c) + j(X_c + X_e)}$$ \hspace{1cm} (2.16)

Where,

$$R_c + jX_e = \frac{jX_m}{\frac{R_c}{s} + j(X_m + X_e)}$$ \hspace{1cm} (2.17)
\[P_g = I_s^2 \frac{R_L}{s} \] \hfill (2.18)

The electrical power developed in the rotor is,

\[P_e = I_s^2 \frac{R_L}{s} (1 - s) \] \hfill (2.19)

Where the slip is negative. The electrical torque developed is then given by,

\[\tau_e(V,s) = \frac{V^2 X_m^2 R_L}{s} \left[\left(\frac{R_x}{s} + \frac{R_L}{s} \right)^2 + (X_s + X_r)^2 \right] \left(R_x^2 + (X_s + X_m)^2 \right) \] \hfill (2.20)

Where,

\[R_x + jX_s = \frac{jX_m(R_x + jX_r)}{R_s + j(X_s + X_m)} \] \hfill (2.21)

MODEL OF PMSG

Using Source convention, voltage equations of PMSG in d-q reference frame (q-axis leads d-axis in the direction of rotation) is

\[V_{\psi d} = R_s i_{\psi d} + \omega \psi_{\psi q} = 0 \] \hfill (2.22)

\[V_{\psi q} + R_s i_{\psi q} + \omega \psi_{\psi d} = 0 \] \hfill (2.23)

The flux linkage equations of PMSG is

\[\psi_{\psi d} = -L_q i_{\psi q} \] \hfill (2.24)

\[\psi_{\psi q} = \psi_f \] \hfill (2.25)

The active and reactive power equations are given by

\[P_s = V_{\psi d} i_{\psi d} + V_{\psi q} i_{\psi q} \] \hfill (2.26)

\[Q_s = V_{\psi d} i_{\psi q} - V_{\psi q} i_{\psi d} \] \hfill (2.27)

MODEL OF DRIVE TRAIN

The rotor of wind turbine and generator are connected directly, so they can be expressed together by

\[\omega_r = \frac{1}{H} (T_m - T_e) \] \hfill (2.28)

\[\delta = \omega_r (\omega_r - 1) \] \hfill (2.29)

Where

- \(H \)- Equivalent inertia time constant of whole drive train.
- \(T_m \)- mechanical torque.
- \(T_e \)- Electro-magnetic torque.

MODEL OF CONVERTERS AND THEIR CONTROLLERS

\[I_{ds}^e = 0 \] \hfill (2.30)

\[i_{qs}^e = \frac{k_{pu}}{\psi_s} (\omega_{ref} - \omega_r) + X_w \] \hfill (2.31)

\[\dot{X}_w = \frac{k_{pu}}{T_w} (\omega_{ref} - \omega_r) \] \hfill (2.32)

EQUATIONS OF GRID SIDE CONTROLLER

When the direction of q-axis is aligned with the voltage vector, then \(V_{ds} = 0 \).

\[P_g = V_{\psi q} i_{\psi q} \] \hfill (2.33)

\[Q_g = V_{\psi q} i_{\psi q} \] \hfill (2.34)

Here \(d \)-Axis grid side current \(i_{dg} \) is controlled to maintain terminal voltage and \(q \)-Axis grid side current \(i_{qs} \) is controlled to obtain constant dc link voltage.

\[i_{dg}^e = \frac{k_{pu}}{V_{dref} - V_{dc}} \] \hfill (2.35)

\[i_{qs}^e = \frac{k_{pu}}{V_{qref} - V_{dc}} + X_v \] \hfill (2.36)

\[\dot{X}_v = \frac{k_{pu}}{T_v} (V_{dref} - V_{dc}) \] \hfill (2.37)

\[\dot{X}_4 = \frac{k_{pu}}{T_4} (V_{qref} - V_{dc}) \] \hfill (2.38)

EQUATION OF DC LINK VOLTAGE

The equation of dc link part is given by

\[\dot{V}_{dc} = \frac{1}{C V_{dc}} (V_{\psi q} i_{\psi q} - V_{dc} i_{ds}^e) \] \hfill (2.39)

Where, \(C \) - Dc link capacitor.

D. INTERFACING WITH POWER SYSTEM

PMSG connected to 3rd bus of 3 machine nine bus system through a transmission line and transformer. The voltage equation describing the interface with the external system can be written as
\[V_{da} = V_{dg} - L_i g \tag{2.40} \]
\[V_{qa} = V_{qg} + L_i g \tag{2.41} \]

Where, \(L \) is sum of transmission line and transformer inductance.

E. NETWORK MODEL

The system can be demonstrated in power equalization or current parity structure. In this theory, control equalization type of system portrayal is embraced. As announced by Peter W. Sauer and M. A. Pai (2002), the power equalization structure has some additional highlights than the present parity structure. In this structure, the all-inclusive DAE framework Jacobian contains data about burden stream Jacobian. The various kinds of burdens can be effectively consolidated in this model. The network equations for generator buses are: \[[14],[16],[18] \]

\[I_a V_i \sin(\delta - \theta) + I_q V_i \cos(\delta - \theta) + P_{Li} - \sum \limits_{k=1}^{n} V_k V_i \sin(\theta - \theta_k - \alpha_k) = 0 \tag{2.42} \]
\[I_a V_i \cos(\delta - \theta) - I_q V_i \sin(\delta - \theta) + Q_{Li} - \sum \limits_{k=1}^{n} V_k V_i \sin(\theta - \theta_k - \alpha_k) = 0 \tag{2.43} \]

Where \(i = 1: m \) no of machines.

The network equations for load buses are:

\[P_{Li} - \sum \limits_{k=1}^{n} V_k V_i \sin(\theta - \theta_k - \alpha_k) = 0 \tag{2.44} \]
\[Q_{Li} - \sum \limits_{k=1}^{n} V_k V_i \sin(\theta - \theta_k - \alpha_k) = 0 \tag{2.45} \]

Where \(i = m+1 \) to \(n \) no of buses.

III. SMALL SIGNAL MODEL OF POWER SYSTEM COMPONENTS

In this approach, the network equations are written in power balance form. Although equivalent to the current balance form, it has some extra features. The extended DAE system Jacobian also contains information about the load flow Jacobian. \[[19],[20],[21] \]

SMALL SIGNAL MODEL FOR SYNCHRONOUS GENERATORS

\[\Delta x = A_1 \Delta x + A_2 \Delta I_g + A_3 \Delta V_g + E \Delta U \tag{3.1} \]

Where \(A_1 = \text{Diag}(A_{1i}) \), \(A_2 = \text{Diag}(A_{2i}) \), \(A_3 = \text{Diag}(A_{3i}) \) and \(E = \text{Diag}(E_i) \)

The network equations (2.42) and (2.45) are linearized to obtain

\[B_{1i} = \begin{bmatrix} 0 & V_{i0} \sin(\delta_{i0} - \theta_{i0}) & 0 & 1 & 0 & 0 \\ 0 & -V_{i0} \cos(\delta_{i0} - \theta_{i0}) & 0 & 1 & 0 \end{bmatrix} \]
\[B_{2i} = \begin{bmatrix} R_{si} & -X_{qi} \\ X_{di} & R_{gi} \end{bmatrix} \]
\[B_{3i} = \begin{bmatrix} -V_{i0} \sin(\delta_{i0} - \theta_{i0}) & \sin(\delta_{i0} - \theta_{i0}) \\ V_{i0} \sin(\delta_{i0} - \theta_{i0}) & \cos(\delta_{i0} - \theta_{i0}) \end{bmatrix} \]
(3.3)

C₁ and C₂ are block diagonal matrices and C₃, C₄, D₁, and D₂ are full matrices. The block diagonal matrices are

\[
C₁ = \begin{bmatrix}
0 & I_{dI0}V_{i0}
0 & -V_{i0}I_{qI0}
\end{bmatrix}
\sin(\delta_{I0} - \theta_{I0})
\begin{bmatrix}
0 & 0
0 & 0
\end{bmatrix}
\]

\[
C₂ = \begin{bmatrix}
V_{i0}
0
\end{bmatrix}
\begin{bmatrix}
\sin(\delta_{I0} - \theta_{I0}) & V_{i0}
\cos(\delta_{I0} - \theta_{I0}) & V_{i0}
\end{bmatrix}
\begin{bmatrix}
0 & 0
0 & 0
\end{bmatrix}
\]

Inclusion of Induction

Inclusion of Induction from (3.2) as

\[
\Delta I = \begin{bmatrix}
B_{s}^{-1}B_{r} \Delta x - B_{s}^{-1}B_{r} \Delta V_{g}
0
\end{bmatrix}
\]

Since \(\Delta I \) is not of interest, it can be eliminated from using (3.2) and (3.3) using (3.4) to get

\[
0 = (C₁ - C₂B_{s}^{-1}B_{r}) \Delta x - (C₃ - C₂B_{s}^{-1}B_{r}) \Delta V_{g} + C₄ \Delta V_{i} + X₉ \Delta E
\]

\[
0 = D₁ \Delta V_{g} + D₂ \Delta V_{i} + \Delta S_{L₁}(V)
\]

Linearised State Model

\[
\Delta x = A_{xxy} \Delta x + E \Delta u
\]

\[
\Delta x = A_{xgs} \Delta x + \Delta E \Delta u
\]

\[
A_{xgs} = A'₁ - \begin{bmatrix}
A'₂ & A'₃
0 & 1
\end{bmatrix}
\begin{bmatrix}
B₁
C₁
\end{bmatrix}
\]

\[
\Delta x_{gs} = \begin{bmatrix}
\Delta x_{gs}
\Delta V_{g}
\Delta V_{i}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\Delta x_{gs}
\end{bmatrix}
= \begin{bmatrix}
A_{xgs}
0
0
\end{bmatrix}
\begin{bmatrix}
A & A₁ & A₂ & A₃ & A₄
0 & B₁ & B₂ & B₃ & B₄
0 & C₁ & C₂ & C₃ & C₄
0 & D₁ & D₂ & D₃ & D₄
\end{bmatrix}
\begin{bmatrix}
\Delta x_{gs}
\Delta V_{g}
\Delta V_{i}
\end{bmatrix}
\]

\[
\Delta \omega = \frac{\Delta T_m - \Delta T_e}{2H}
\]

\[
\frac{d\Delta \omega}{dt} = \omega_s \Delta \omega
\]

\[
\frac{d\Delta V_{d}}{dt} = \frac{1}{CV_{dc}} (V_{q0} \Delta i_{q0} - V_{d0} \Delta i_{d0}) - \frac{\Delta V_{dc}}{CV_{dc}} (V_{d0} \Delta i_{q0} - V_{q0} \Delta i_{d0})
\]

\[
\frac{d\Delta V_{g}}{dt} = \frac{K_{pv}}{T_w} (-\Delta \omega)
\]

\[
\frac{d\Delta V_{i}}{dt} = \frac{K_{pv}}{T_v} (-\Delta V_{dc})
\]
The real and reactive power equations are given by

\[\Delta P_g = \Delta V_{da} \dot{q}_g + \Delta i_{dq} V_{da}^* \]

(3.18)

\[\Delta Q_g = -\Delta V_{da} q_g - \Delta i_{dq} V_{da}^* \]

(3.19)

\[A_{PMSG} = \begin{bmatrix} \frac{K_{pv}+a_{11}}{2H} & 0 & 0 & a_{14} & 0 & 0 \\ a_{31} & 0 & a_{33} & a_{34} & a_{35} & a_{36} \\ a_{41} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]

Where,

\[a_{11} = T_m \left(\omega_{pv} \times dC_p \times dh - \frac{d\dot{\lambda}}{d\lambda} \right) - C_p \]

(3.20)

\[a_{13} = -\frac{V_{qso} \phi K_{pv} + I_{qwo} \phi R_{pv}}{C_{dco} \phi^2} \]

(3.22)

\[a_{31} = \frac{K_{pv} V_{qso}^\phi - V_{qso}^\phi i_{qwo}^\phi + V_{dso} i_{dgo}^\phi}{C_{dco}^2} \]

(3.23)

The linearized state model is added to the state space

\[\Delta x_{PMSG} \rightarrow \Delta V_{dc} \quad \Delta X_w \quad \Delta X_i \quad \Delta X_4 \]

(3.32)

Because of the stochastic ideas of wind speed, generator speed shifts constantly to follow the greatest power point. These speed varieties are converted into generator yield control varieties and thusly into DC interface voltage changes. Consequently, emerges a requirement for composed tuning of MSC and GSC controllers. In any case, facilitated tuning of these controllers utilizing the customary experimentation technique is a lumbering and testing task. In this manner improvement strategies are being used for the planned tuning of controllers.
IV. RESULTS AND DISCUSSION

This Chapter presents the small signal stability analysis of a 3 machine 9 bus system consisting of two synchronous generators and one PMSG based WECS. Then one induction generator is included in the system.

The system considered for analysis is shown in Appendix A.1. The data for this system is given in Appendix A. Here PMSG is connected to the 3rd bus and is considered as load bus. The load flow results are presented in Table 4.1.

<table>
<thead>
<tr>
<th>BUS TYPE</th>
<th>VOLTAGE (in p.u.)</th>
<th>P_L (in p.u.)</th>
<th>Q_L (in p.u.)</th>
<th>P_L (in p.u.)</th>
<th>Q_L (in p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swing</td>
<td>1.0405 ± 0.000</td>
<td>1.5403</td>
<td>0.2264</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-V</td>
<td>1.025 ± 0.0007</td>
<td>1.6300</td>
<td>0.0245</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-Q</td>
<td>1.039 ± 0.0025</td>
<td>-</td>
<td>0.0158</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-Q</td>
<td>1.031 ± 0.0014</td>
<td>-</td>
<td>0</td>
<td>1.25</td>
<td>0.5</td>
</tr>
<tr>
<td>P-Q</td>
<td>1.0028 ± 0.0024</td>
<td>-</td>
<td>0.9</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>P-Q</td>
<td>1.0202 ± 0.0027</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-Q</td>
<td>1.0280 ± 0.0010</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-Q</td>
<td>1.0193 ± 0.0023</td>
<td>-</td>
<td>1</td>
<td>0.35</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.2. Eigenvalues for inclusion of PMSG

<table>
<thead>
<tr>
<th>MODES</th>
<th>EIGEN VALUES</th>
<th>OSCILLATION FREQUENCY</th>
<th>DAMPING RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_3, \omega_x)</td>
<td>-7.3571 ± 2.5151i</td>
<td>8.3580</td>
<td>0.1387</td>
</tr>
<tr>
<td>(\delta_4, \omega_x)</td>
<td>-1.2196 ± 17.6518i</td>
<td>2.8094</td>
<td>0.0689</td>
</tr>
<tr>
<td>(\nu_{dc}, \chi_T)</td>
<td>-7.6256 ± 6.5233i</td>
<td>1.0385</td>
<td>0.3733</td>
</tr>
<tr>
<td>(E_{d3}, X_{d})</td>
<td>-3.6816 ± 3.1660i</td>
<td>0.5039</td>
<td>0.8735</td>
</tr>
<tr>
<td>(E_{f1})</td>
<td>-4.7928</td>
<td>0.4889</td>
<td>1.0000</td>
</tr>
<tr>
<td>(E_{f2})</td>
<td>-4.9511</td>
<td>0</td>
<td>1.0000</td>
</tr>
<tr>
<td>(F_{f1})</td>
<td>-0.0510</td>
<td>0</td>
<td>1.0000</td>
</tr>
<tr>
<td>(F_{f2})</td>
<td>-0.2995</td>
<td>0</td>
<td>1.0000</td>
</tr>
<tr>
<td>(\omega_x, \chi_T)</td>
<td>-17.2717 ± 5.9178i</td>
<td>0.9418</td>
<td>0.9460</td>
</tr>
<tr>
<td>(E_{f1})</td>
<td>-3.2238</td>
<td>0</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

The system remains stable after suffering a small disturbance since all eigenvalues have negative real parts. Five complex conjugate eigen values represent the four oscillatory modes. The six negative real eigenvalues represent the three non-oscillatory modes.

Table 4.3. Participation Factor for inclusion of PMSG

The system considered for analysis is shown in Appendix A.1. The data for this system is given in Appendix A. Here PMSG is connected to the 3rd bus and is considered as load bus. The load flow results are presented in Table 4.1.

<table>
<thead>
<tr>
<th>BUS TYPE</th>
<th>VOLTAGE (in p.u.)</th>
<th>P_L (in p.u.)</th>
<th>Q_L (in p.u.)</th>
<th>P_L (in p.u.)</th>
<th>Q_L (in p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swing</td>
<td>1.0405 ± 0.000</td>
<td>1.5403</td>
<td>0.2264</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-V</td>
<td>1.025 ± 0.0007</td>
<td>1.6300</td>
<td>0.0245</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-Q</td>
<td>1.039 ± 0.0025</td>
<td>-</td>
<td>0.0158</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-Q</td>
<td>1.031 ± 0.0014</td>
<td>-</td>
<td>0</td>
<td>1.25</td>
<td>0.5</td>
</tr>
<tr>
<td>P-Q</td>
<td>1.0028 ± 0.0024</td>
<td>-</td>
<td>0.9</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>P-Q</td>
<td>1.0202 ± 0.0027</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-Q</td>
<td>1.0280 ± 0.0010</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-Q</td>
<td>1.0193 ± 0.0023</td>
<td>-</td>
<td>1</td>
<td>0.35</td>
<td>0</td>
</tr>
<tr>
<td>P-Q</td>
<td>1.039 ± 0.0025</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4.4 Effect of wind variation (For 5 m/s and 11.5 m/s)

A. INFERENCE FROM PARTICIPATION FACTOR MATRIX

The participation factor gives the role played by a state variable in a particular mode. It is a measure of relative participation of a state variable.

Table 4.4 represents the Eigen values of PMSG with the effect of wind variation 5 m/s, 11.5 m/s. The small signal stability analysis is performed for possible minimum (5 m/s) and maximum wind speed (11.5 m/s). The result shows that the damping ratio of mechanical mode SG 1 reduced by 11%. The damping ratio of electrical mode of PMSG increases by 53.8%.

Table 4.5. Load Flow results for inclusion of PMSG and Induction generator

Table 4.6. Eigenvalues for inclusion of PMSG and Induction generator

B. INFERENCE FROM EIGENVALUES

The system remains stable after suffering a small disturbance since all eigenvalues have negative real parts. Six complex conjugate eigen values represent the four oscillatory modes. The six negative real eigenvalues represent the three non-oscillatory modes.

Table 4.7. Participation Factor for inclusion of PMSG and Induction generator

The participation matrix gives the role of state variables in particular modes. The state variables that influence the modes are shown in table 4.5.
ANALYSIS OF THE SMALL SIGNAL STABILITY OF THE POWER SYSTEM CONNECTED WITH WIND GENERATORS

C. OPTIMISED VALUES

For the above cases the values of controller parameters are chosen by trial and error method. Thus the values are optimized using genetic algorithm technique and eigenvalues are tabulated.

Tuned Parameters values for inclusion of PMSG

<table>
<thead>
<tr>
<th>K_p</th>
<th>T_int</th>
<th>K_P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3112</td>
<td>0.4941sec</td>
<td>-</td>
</tr>
<tr>
<td>8.2219</td>
<td>0.1641sec</td>
<td>2.8264</td>
</tr>
</tbody>
</table>

Table 4.8. Improved Eigenvalues for inclusion of PMSG

<table>
<thead>
<tr>
<th>NO</th>
<th>EIGEN VALUES (*e0.02)</th>
<th>OSCILLATION FREQUENCY</th>
<th>DAMPING RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-0.7560</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-0.0378 e-0.5284s</td>
<td>8.0455</td>
<td>0.1334</td>
</tr>
<tr>
<td>5</td>
<td>-0.0124 e-0.1789s</td>
<td>2.81</td>
<td>0.0701</td>
</tr>
<tr>
<td>7</td>
<td>-0.0555 e-0.3979s</td>
<td>0.3</td>
<td>0.8113</td>
</tr>
<tr>
<td>9</td>
<td>-0.0661</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>-0.0473</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>-0.0484</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>-0.0695</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>-0.0636</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>-0.7524</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>-0.0201</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>-0.0232</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.9. Improved Eigenvalues for inclusion of PMSG and Induction generator

<table>
<thead>
<tr>
<th>NO</th>
<th>EIGEN VALUES (*e0.02)</th>
<th>OSCILLATION FREQUENCY</th>
<th>DAMPING RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-0.6931</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-0.0385 e-0.0335s</td>
<td>1.33</td>
<td>0.7932</td>
</tr>
<tr>
<td>5</td>
<td>-0.0075 e-0.0200s</td>
<td>1.31</td>
<td>0.0714</td>
</tr>
<tr>
<td>7</td>
<td>-0.0099</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>-0.0085</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>-0.0225 e-0.0200s</td>
<td>0.46</td>
<td>0.8731</td>
</tr>
<tr>
<td>13</td>
<td>-0.0356 e-0.0311s</td>
<td>0.21</td>
<td>0.9325</td>
</tr>
<tr>
<td>15</td>
<td>-0.0080</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>-0.0035</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>-0.0010</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>-0.0062</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>-0.0084</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>-0.0048</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>-0.0090</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>-0.0079</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>-0.0012</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Tuned values for inclusion of PMSG and induction generator

<table>
<thead>
<tr>
<th>K_p</th>
<th>T_int</th>
<th>K_P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5539</td>
<td>0.3592 sec</td>
<td>-</td>
</tr>
<tr>
<td>7.6496</td>
<td>0.1591 sec</td>
<td>1.8919</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

TTBS with and without DSSC are simulated. The results indicate that the voltage, real power and reactive power are improved by the addition of DSSC. The increase in V,P and Q are due to increase in voltage with the addition of DSSC. DSSC has the ability to compensate the voltage sag in power and distribution lines. The disadvantage of DSSC is that the hardware cost is increased.

The present work deals with TTBS with and without DSSC. Studies on closed loop TTBS with PI and PR systems will be done in future.

REFERENCES

AUTHORS PROFILE

S.Aarthi Surya, Assistant Professor Department of EEE, Bharath Institute of Higher Education and Research, Tamilnadu, India.

Anitha SampathKumar, Assistant Professor Department of EEE, Bharath Institute of Higher Education and Research, Tamilnadu, India.

S.Sherine, Assistant Professor Department of EEE, Bharath Institute of Higher Education and Research, Tamilnadu, India.