
 International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 ï 8958, Volume-8 Issue-6S, August 2019

1027

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: F11960886S19/19©BEIESP

DOI:10.35940/ijeat.F1196.0886S19

Abstractð The security aspect on provably secure hash

function relies upon the design principles of Random Oracle

(RO). Poor design principles make the said function vulnerable

to hash attacks. The conventional keyless provably secure hash

functions MD-5, SHA-2 and SHA-3 use RO or Sponge principles

for the design and construction of hash function. They use

bitwise operators AND, OR, XOR and modulo arithmetic for

processing the input blocks. These operators are simple to use

and they are efficient in terms of achieving quick response time.

At the same time the repeated use of them in the input blocks may

invite hash collisions. The proposed design advocates the use of

multi variable higher-order polynomial function for the design of

round function in RO. The new design paradigm derogates the

use of bitwise operators at block level processing and hardens the

internal structure of RO with higher- order polynomial function

to ensure better security. The results prove that, the new

prototype helps the block iterated hash function to exhibit strong

random behavior even for a small bit flip in the input. Therefore,

performing differential analysis on the proposed design is very

hard than ever before.

Index terms: Block Iterated Hash Functions, Polynomials for

sparse mapping of hashes, Random Oracle design through

Polynomials, Enhancing hash security using polynomials,

Avalanche effect in hash design using polynomials, Provably

Secure Block Iterated Hash Functions

I. INTRODUCTION

Data security is a prime concern in modern computing for

the impact it creates on individuals' lives due to identity

theft [1][2]. The user information is purely personal and

sensitive and importantly the remote data breaching have to

be addressed properly with lot of care. This is not an easy

task to perform because the data is not under the physical

control of the owner. Provably secure keyless function finds

an appropriate solution to this problem. It quickly

recognizes the data breaching in a remote server and finds a

quick remedy. Provably secure hash function takes arbitrary

length input string {0,1}m and maps it to a fixed size output

{0,1}n[3][4]. The values such as m and n represent the size

of input and output respectively. The size of the input m is

normally greater than the output size n. As a result, the hash

Revised Manuscript Received on August 14, 2019.

P.Karthik , Research Scholar, Department of Computer Science, School

of Engineering and Technology, Pondicherry University, Puducherry,

Tamilnadu, India.(email Id: thooralonly@gmail.com)

Dr. P. Shanthibala Assistant Professor, Department of Computer
Science, School of Engineering and Technology, Pondicherry

University,Puducherry, Tamilnadu, India (email Id:

shanthibala.cs@gmail.com)

function performs compression on input data in order to

produce fixed length output. The hash output is otherwise

known to be in different names as such hash or digest or

Modification Detection Code (MDC), and it is generally

presumed as a short form of representation of larger binary

string. Under this stage, the input and output mapping of

cryptographic hash function comes one to one. Actually the

achievement of one to one mapping on compression

function is not possible due to Pigeon-Hole principle [5].

Cryptographic hash function tries to over overcome this

problem by performing sparse mapping over the output

domain. This property enables the hash function, does not

have correlation between outputs correspond to different

inputs. Therefore, performing differential analysis against

this algorithm will be difficult. Figure-1 demonstrates the

mappings of cryptographic hash function.

Fig: 1 One to One mapping of cryptographic hash

function

According to Bart Preneel (1993b) and Timo Bartkewitz

(2009), the hash function should adhere some of the key

properties of provably secure hash function for

cryptographic use [6][7]. The properties are given as

follows:

¶ Collision Resistance- For any two different

messages x and y , H(x) # H(y).

¶ Pre-Image Resistance- For a given hash value H(x)

an adversary should not find y such that x # y and

H(x)=H(y)

Design Of Random Oracle For Block Iterated

One-Way Ciphers Through Polynomial

Functions

P. Karthik, P. Shanthibala

DESIGN OF RANDOM ORACLE FOR BLOCK ITERATED ONE -WAY CIPHERS THROUGH POLYNOMIAL

FUNCTIONS

1028

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: F11960886S19/19©BEIESP

DOI:10.35940/ijeat.F1196.0886S19

¶ Second Pre-Image Resistance- It is computationally

infeasible for an adversary to find the second pre-image y of

x such that, x#y and H(x) =H(y).

The proposed design hereafter referred as Block Iterated

One-way Polynomial Cipher (BIOPC), identifies the

structural weakness of the conventional algorithms MD5,

SHA-160, SHA-224, SHA-256, SHA-384, SHA-512,

SHA3-224, SHA3-256, SHA3-384 and SHA3-512. It

advocates the use of polynomial function for enhancing the

security of block iterated one way hash function. BIOPC

works on 1024 bits blocks to produce 512 bits output. The

blocks are applied to higher-order polynomial function of

degree 128, to produce intermediate results of sizes between

270 and 290 nibbles using the wide-pipe principle as

suggested by Stefan Lucks (2004)[8]. The intermediate

outputs are then truncated to 256 nibbles and are

subsequently applied to the next block for modifying the

block elements. This process will be continued till all the

blocks are processed. The final hash of BIOPC is the hash

output of the last block.

The paper is summarized as follows: Section 2 describes

the related work, Section 3 highlights the design principles

of BIOPC, Section 4 advocates the merits of BIOPC through

experimental analysis, Section 5 deals with discussion and

Section 6 conveys concluding remarks of future

enhancements.

II. RELATED WORK

It was first time in history Ivan Bjerre Damgard and

Ralph C Merkle, the colonizers of provably secure hash

function, proved the world provably secure properties

through mathematical deductions[9][10]. The conventional

provably secure keyless hash functions such as MD4, MD5,

SHA-224, SHA-256, SHA-384 and SHA-512 used Merkle-

Damgard(MD) construction principles for the design of hash

function.

Ronald Rivest invented MD4 algorithm using MD

construction principles in 1992 [11]. Rivest used 3 auxiliary

functions with 4 initialization vectors (IVs) of 32 bits each

to produce 128 bits hash output. MD4 was operated on 512

bits blocks to produce 128 bits hash output. In the same

year, Rivest came up with another algorithm called MD5

[12]. The new MD5 used 4 auxiliary functions instead of 3

and it produced 128 bits hash output. It was believed that,

MD5 was more secure than its predecessor MD4. During the

year 2001, D Eastlake et al., discovered a new 160 bits

SHA-1 algorithm [13]. SHA-1 used 5 auxiliary functions of

32 bits each to produce 160 bits hash output. The use of

MD4, MD5 and SHA-1 was prohibited from cryptographic

use after 2004. This was because, they were identified as

producers of hash collisions [14][15].

During the year 2004-2005, series of attacks were

reported against SHA-1 algorithm. SHA-1 was previously

approved by the US based National Institute of Standards

and Technology (NIST), as a new standard for hash

functions that time. The attacks on SHA-1 forced NIST to

set a new standard for provably secure hash function

through open competition [16]. The open competition was

announced during 2007 and after several rounds of scrutiny,

NIST was selected Keccak as the winner of the competition

in October 2012 [17]. SHA-3 has been a new standard for

all the cryptographic hash functions from October 2012

[18].

III. D ESIGN PRINCIPLES

BIOPC applies higher-order polynomial function into the

design of RO using the principles of block iterated hash

functions. Polynomial function of higher-degree is chosen

because, finding roots of higher-degree polynomial function

is extremely difficult and it does not have standard solution

[19]. This design uses two variables polynomial function as

follows:

P(x,y)= C0x
n
+C1 x

n-1
y

1
+....+Cny

n
-----> Eq(1)

The use of two variables in the polynomial function

prevents hash collisions due to truncation of trialing bits in

the hash output. BIOPC generates hash values in two

different levels as follows:

¶ Pre-Processing

¶ Hash generation through Polynomial Round

Function

A. Pre-Processing

Pre-Processing is the first level of hash generation

process. In this level the input message is pre-processed at

first, before it is applied into the polynomial function for

block level processing. This is performed through MD-

strengthening at tail end of the message to be processed

[22]. Here, the block size is fixed as 1024 bits. BIOPC

differs from conventional MD-Strengthening by not

reserving the last 64 bits for storing the length attribute of

the input message. Rather, it performs MD-Strengthening by

dynamically calculating the padding bits at runtime. BIOPC

uses Equation 2, to perform message padding as follows:

padlen=128-(dblen+blen+1) MOD 128 ------> Eq(2)

Here, Dblen represents the number of elements present in

the input string and blen implies number of bytes which are

required to represent the length attribute of the input string.

The first byte of the padding is set with 0x80 and the

remaining bytes are filled with zeros. The byte values of

blen are stored at the tail end of the last block. The dynamic

padding of BIOPC enables it to process messages of size

greater than 264 bits. After message being strengthened,

BIOPC applies IVs to modify the input elements. This step

is being performed to introduce near random behavior for

the RO model. BIOPC uses an array of 8 IVs to process the

message blocks. Each element of the IV is of 128 bits in

length and the concatenation of all IVs yield to 1024 bits.

The concatenated IVs are finally XORed with message

block to produce an unintelligible junk of input bytes of

1024 bits per block. Table 1 shows the IV elements of

BIOPC

 International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 ï 8958, Volume-8 Issue-6S, August 2019

1029

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: F11960886S19/19©BEIESP

DOI:10.35940/ijeat.F1196.0886S19

Table 1: IVs Used in BIOPC

Fig 2: Elements of the input array after MD

strengthening

The junk of bits is produced by BIOPC for the sample

input has been shown in Figure 2 for analysis. The elements

of IVs are circularly rotated for every block to be processed.

Each element in the IV array is circularly rotated in one

position on right and the IV element itself is circularly

rotated to 5 bits on left. The objective of the rotation is to

generate different IVs for every individual block to be

processed.

B. Hash Generation Through

Polynomial Round Function

This is a second level of hash generative process. Level-1

converts the input string into unintelligible junk of byte

array such a way that, the size of the array appears to be in

multiples of block size. The individual block of strengthened

array is then applied to two variables polynomial function at

degree 128, in order to establish intermediate hash outputs.

Intermediate hashes are then being used here to modify the

next block elements to be processed. To perform this

operation, the polynomial

Fig 3: Working principle of polynomial Round

Function

round function uses 2 prime numbers in place of the

polynomial variables x and y . It uses the bytes of the

individual block as the co-efficient for the polynomial

function. The intermediate hash output of the polynomial

function usually contains 270-290 nibbles. In order to

achieve such size, the polynomial variables are assigned

values in the range between 300 and 600. Figure 3 illustrates

the working principle of polynomial round function for

Block-1.

Randomness is a desirable property of provably secure

hash function. BIOPC achieves randomness in the

intermediate hashes by, shuffling the nibbles of the

intermediate output evenly across the length of the hash.

This operation is performed at 2 steps namely truncation and

shuffling.

a.. Truncation

Fig 4: Truncation

DESIGN OF RANDOM ORACLE FOR BLOCK ITERATED ONE -WAY CIPHERS THROUGH POLYNOMIAL

FUNCTIONS

1030

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: F11960886S19/19©BEIESP

DOI:10.35940/ijeat.F1196.0886S19

Truncation module truncates the required block output

size of 256 nibbles by, taking two halves of 128 nibbles

each from the mid position of the intermediate hash output

on either direction. The truncated two halves then store up

separately in different arrays for shuffling. The pseudo code

given in Figure 4 illustrates the working principle of this

module.

b. Shuffling

Under Shuffling, the truncated halves of the intermediate

hash output are shuffled into the entire length of the hash

output. BIOPC performs shuffling using the nibbles of the

intermediate hash halves. The pseudo code given in Figure 5

demonstrates the internal shuffling of intermediate hashes at

block level. The final hash of the BIOPC is obtained from

the intermediate result of block Ml. In this block, the two

halves hardly shuffle and they get XORed to produce 128

nibbles of hash output.

Fig 5: Shuffling

IV. EXPERIMENTAL ANALYSI S & RESULTS

In experimental analysis BIOPC is subjected to

exhaustive experimental analysis on the key attributes of

provably secure keyless hash function namely Collision

resistance, Pre-Image resistance and Second pre-image

resistance. The desirable property of strict avalanche

criterion puts on test by comparing the nibbles with the

reference value for possible match. At end BIOPC is

compared to existing provably secure keyless hash functions

SHA-224, SHA-256, SHA-384, SHA-512, SHA3-224,

SHA3-256, SHA3-384 and SHA3 -512, using various data

sets. All the experiments are conducted for analysis using

Intel(R) Core(TM) i3 6006U CPU @ 2.00 GHz 2.00 GHz

processor with Windows-10 64 bits operating system. The

algorithm is fully designed and tested using JDK 10.0.1.

A. ANALYSIS ON COLLISION AND PRE-IMAGE

RESISTANCE (MODIFYING THE INDIVIDUAL BYTES

FOR ALL POSSIBLE VALUES)

On the basis of analysis it has been identified that, BIOPC

is not producing collisions when it is subjected to collision

resistance and pre-image resistance by modifying the

individual bytes of the input string for all possible values.

Table 2: Response on Collision and Pre-Image

resistance test for all possible byte values

Fig 6: Graphical response on Collision and Pre-Image

resistance test

Table 2 presents the response of this test for various data

sets. Figure 6 reflects the graphical response of Table-2

entries. Figure 7 shows the sample screen shot for collision

and pre-image resistance test, for all possible values of

individual byte on 4K data.

Fig 7: Sample response on Collision and Pre-Image

resistance test for 4K data

 International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 ï 8958, Volume-8 Issue-6S, August 2019

1031

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: F11960886S19/19©BEIESP

DOI:10.35940/ijeat.F1196.0886S19

B. ANALYSIS ON COLLISION AND PRE-IMAGE

RESISTANCE (FOR ALL POSSIBLE TWO BYTES

INTERCHANGES)

A test on Collision resistance and Pre-Image resistance is

conducted through all possible two bytes interchanges for

the given input string. Table 3 presents the response of

BIOPC on this test. Figure 8 graphically represents the

outcome of this test. Figure 9 shows the sample response of

BIOPC on all possible two bytes interchanging of 1280

bytes of input data.

Table 3: Response on Collision and Pre-Image

resistance test for all two bytes interchanges

Fig 8: Graphical response on all possible two bytes

interchanges

Fig 9: Sample response on Collision and Pre-Image

resistance test for 1280 bytes

C. ANALYSIS ON COLLISION AND SECOND PRE-

IMAGE RESISTANCE

In this test, BIOPC is supplied with two randomly

selected input strings from the domain of 100 thousands of

random samples. The sample input strings are varying in

length in the range between 1 and 100 thousands of bytes.

The response of the hash function is recorded for hash

matches.

Table 4: BIOPC response on Collision and Second

Pre-Image resistance test

Table 4 shows the response of Collision and Second Pre-

Image resistance test. Figure 10 presents the graphical

response of BIOPC for Collision and Second Pre-Image

resistance test.

Fig 10: Graphical response on Collision and Second

Pre-Image resistance test.

DESIGN OF RANDOM ORACLE FOR BLOCK ITERATED ONE -WAY CIPHERS THROUGH POLYNOMIAL

FUNCTIONS

1032

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: F11960886S19/19©BEIESP

DOI:10.35940/ijeat.F1196.0886S19

Figure 11 shows the sample response of this test on 30000

randomly selected samples.

Fig 11: Response of BIOPC on Collision and Second

Pre-Image resistance test for 30000 samples

D. AVALANCHE RESPONSE OF BIOPC

This is a desirable property of cryptographic hash

function. According to the property, a small change in the

input string affects substantial number of output bits of the

hash function [20]. A.F. Webster et al. (1985) suggested

that, hash function would meet strict avalanche criterion for

it to be considered for cryptographic use. To realize this

property, the hash function should affect more than 50 % of

the output bits, for a small change in the input string [21].

Table 5: Avalanche response of BIOPC

Fig 12: Graphical view of avalanche response

Fig 13: Avalanche response of BIOPC for 1K data

Table 5 presents the response of BIOPC on avalanche

effect. Figure 12 shows the graphical response of BIOPC.

Figure 13 confronts the sample response of the algorithm on

avalanche effect.

E. RUNTIME ANALYSIS

In this experiment the runtime performance of BIOPC is

compared to the conventional keyless cryptographic

functions SHA-224, SHA-256, SHA-384, SHA-512, SHA3-

224, SHA3-256, SHA3-384 and SHA3 -512. The response

time of the aforementioned algorithms is derived from the

mean of 25 samples from each data set. Table 6 presents the

runtime response of conventional keyless hash functions in

Milliseconds. Figure 14 showcases the runtime performance

of BIOPC in graphical format. Figure 15 gives the sample

response of BIOPC for 2K data.

Table 6: Runtime time analysis for various data sets

