

B. Komala, R. Sumithra

Abstract: The effect of uniform and non-uniform salinity gradients on the onset of triple diffusive convection in a system of composite layers enclosing an incompressible, three component, electrically conducting fluid which lies above a saturated porous layer of the identical fluid is studied analytically. The upper boundary of the fluid layer and the lower boundary of the porous layer are static and both the boundaries are insulating to heat and mass. At the interface, the velocity, shear stress, normal stress, heat, heat flux, mass and mass flux are presumed to be continuous, intended for Darcy-Brinkman model. An Eigenvalue problem is attained and the same is solved by the regular perturbation approach. The critical Rayleigh number which is the guiding principle for the invariability of the system is accomplished for every salinity profile individually. The effects of various physical parameters on the onset of Triple diffusive convection are considered for all the profiles graphically.

Keywords: Triple diffusion, non-uniform Salinity gradients, Regular perturbation method, Darcy-Brinkman model.

I. INTRODUCTION

In standard Benard problem, density difference was the only destabilizing source due to which the system was unstable. This unstability is due to the difference in temperature between the two surface boundaries of the fluid. This situation where the temperature is the only diffusing component is referred to as single component diffusion. If the fluid has additional salt dissolved in it then there are two destabilizing sources for the density difference temperature field i.e. and salt field, which is known as double diffusion. Along with the temperature, if there are two dissolved more agencies (salts) present in the fluid the convection is referred to as triple diffusive convection. The effect of third а diffusive agent is receiving muchattention in present day research field asthere are numerous physical systems withtwo dissolved salts diffusing independentlyalong with temperature field.

Manuscript published on 30 August 2019.

* Correspondence Author (s)

B. Komala, Research Scholar, Research and Development Centre, Bharathiar University, Coimbatore - 641 046 Tamil nadu, INDIA.

R. Sumithra, Associate Professor, Department of Mathematics, Government Science College, Bangalore - 560001, Karnataka, INDIA

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an <u>open access</u> article under the CC-BY-NC-ND license <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

Retrieval Number: F11590886S19/2019©BEIESP DOI:10.35940/ijeat.F1159.0886S19 Journal Website: <u>www.ijeat.org</u> Griffiths [4], Turner [19] recognized that there are many situations where more than two dissolved salts present along with the temperature are field. For instance: solidification of molten alloys, geothermally heated lakes, oceanography, highquality crystal production, oceanography, production of pure medication, undergroundwater flow and many more.

Griffiths [4], Pearlstein et al [8] and Lopez [5] investigated theoretically the onset of convection in an infinite horizontal layer of triple diffusive fluid. Shivakumara S Kumar [16] T and investigated the bifurcation analysis а triply of diffusive coupled stress fluid in terms of а simplified model consisting of seven nonlinear ordinary differential equations. Shivakumara T S studied and Kumar [17] have the linear and weaklynonlinear triple diffusive convection in couple stress fluid layer. K.R. Raghunathaand I.S Shivakumara [9] have investigatedthe triple diffusive convection in an Oldroyd-B fluidsaturated porous layer by performing linear and weakly stabilityanalyses. nonlinear Sameena and S. Pranesh [14] have Tarannum studied a nonlinear triple diffusive convection in a rotating couple stress liquid to study the effect of heat and mass transfer by deriving Ginzburg Landau equation. Chand S [1] studied theoretically the triple-diffusive convection in а layer micropolar soluted ferrofluid heated and below uniform field with transverse magnetic along with uniform vertical rotation. Rana GC studied et al [11] have the onset of triplediffusive convection in а horizontal layer of nano fluid heated from below and salted from below both analytically above and and numerically. Rionero [12] studied а triply fluid convective diffusive mixture saturating а horizontal layer, heated from below porous and salted from above. Rionero [13] also investigated multicomponent diffusive convection in the the layer for the more general case porous when heated from below and salted by m salts partly from above and partly from below. Zhao, Wang and Zhang [22] investigated the problem of triply diffusive convection in a Maxwell fluid porous layer. K.R. Raghunath saturated et al [10] investigated the weakly nonlinear stability of

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

the triple diffusive convection in Maxwell а saturated porous Mukesh fluid layer. Kumar Awasthi et al [6] have performed linear а stability analysis for the onset of triple-diffusive convection in the presence of internal heat source in a Maxwell fluid saturated porous layer. All the above literature are confined to the single layer of fluid or porous layer but in many physical systems, the occurrence of composite layer and salinity gradients is natural which motivated us to study the onset of triple diffusive convection in fluid - porous composite layer for uniform and non-uniform salinity gradients.

II. FORMULATION OF THE PROBLEM

We consider a horizontal three component, electrically conducting fluid saturated isotropic sparsely packed porous layer of thickness $|d_m|$ underlying a three component fluid layer of thickness d. The lower surface of the porous layer and the upper surface of the fluid layer are bounded by rigid walls. Both the boundaries are kept at different constant temperatures and salinities. A Cartesian coordinate system is chosen with the origin at the interface between porous and fluid layers and the z - axis vertically upwards. The governing equations are continuity equation, momentum equation, energy equation, species concentration equations, and the equation of state are as follows,

For Fluid layer, $\nabla \vec{a} = 0$

$$\begin{array}{l} \nabla \cdot \vec{q} = 0 \\ \hline \rho_0 \left[\frac{\partial \vec{q}}{\partial t} + (\vec{q} \cdot \nabla) \vec{q} \right] = -\nabla P + \mu \nabla^2 \vec{q} - \rho g \hat{k} \\ \hline \frac{\partial T}{\partial t} + (\vec{q} \cdot \nabla) T = \kappa \nabla^2 T \end{array}$$

$$(1)$$

(3)

$$\frac{\partial C_1}{\partial t} + (\vec{q} \cdot \nabla) C_1 = \kappa_1 \nabla^2 C_1$$

$$\frac{\partial C_2}{\partial t} + (\vec{q} \cdot \nabla) C_2 = \kappa_2 \nabla^2 C_2$$
(5)

where

$$\rho = \rho_0 \left[1 - \alpha_t \left(T - T_0 \right) + \alpha_{s1} \left(C_1 - C_0 \right) + \alpha_{s2} \left(C_2 - C_0 \right) \right]$$
(6)

and for the porous layer,

$$\begin{aligned}
\nabla_{m} \cdot \vec{q}_{m} &= 0 \\
\rho_{0} \left[\frac{1}{\varepsilon} \frac{\partial \vec{q}_{m}}{\partial t} + \frac{1}{\varepsilon^{2}} (\vec{q}_{m} \cdot \nabla_{m}) \vec{q}_{m} \right] &= -\nabla_{m} P_{m} + \mu \nabla^{2} \vec{q}_{m} - \frac{\mu}{K} \vec{q}_{m} - \rho_{m} g \hat{k} \end{aligned}$$

$$\begin{aligned}
A \frac{\partial T_{m}}{\partial t} + (\vec{q}_{m} \cdot \nabla_{m}) T_{m} &= \kappa_{m} \nabla_{m}^{2} T_{m} \end{aligned}$$
(8)
$$\end{aligned}$$

$$\phi \frac{\partial C_{m1}}{\partial t} + \left(\vec{q}_m \cdot \nabla_m\right) C_{m1} = \kappa_{m1} \nabla_m^2 C_{m1}$$
(10)

$$\phi \frac{\partial C_{m2}}{\partial t} + \left(\vec{q}_m \cdot \nabla_m\right) C_{m2} = \kappa_{m2} \nabla_m^2 C_{m2}$$
⁽¹¹⁾

where

$$\rho_{m} = \rho_{0} \Big[1 - \alpha_{tm} \big(T_{m} - T_{0} \big) + \alpha_{sm1} \big(C_{m1} - C_{0} \big) + \alpha_{sm2} \big(C_{m2} - C_{0} \big) \Big]$$
(12)

and the symbols in the above equations have the following meaning

 $|\vec{q} = (u, v, w)|$ is the velocity vector, \vec{t} is the time, μ is the fluid viscosity P is the total pressure, P_0 is the fluid density, $|\vec{g}|$ is the acceleration due to the gravity, is the ratio of heat capacities, C_p is the

Retrieval Number: F11590886S19/2019©BEIESP

DOI:10.35940/ijeat.F1159.0886S19

Journal Website: www.ijeat.org

specific heat, [K] is the permeability of the porous medium, T is the temperature, K is the thermal diffusivity of the fluid,

 C_1, C_2 are the concentrations or the salinity fields, is the solute diffusivity of the fluid,

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

$$\alpha_{t} = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{P,T} \left[\alpha_{s1} = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial C} \right)_{P,C_{1}} \right] \left[\alpha_{s2} = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial C} \right)_{P,C_{2}} \right] \phi \text{ is the porosity and the subscripts } \overline{m} \text{ and } \overline{f} \text{ is the porosity and the subscripts } \overline{m} \text{ and } \overline{f} \text{ is the porosity and the subscripts } \overline{m} \text{ and } \overline{f} \text{ is the porosity and the subscripts } \overline{m} \text{ and } \overline{f} \text{ is the porosity and the subscripts } \overline{m} \text{ and } \overline{f} \text{ is the porosity and the subscripts } \overline{m} \text{ and } \overline{f} \text{ is the porosity } \overline{n} \text{ and } \overline{f} \text{ is the porosity } \overline{n} \text{ and } \overline{f} \text{ is the porosity } \overline{n} \text{ and } \overline{f} \text{ is the porosity } \overline{n} \text{ and } \overline{f} \text{ is the porosity } \overline{n} \text{ and } \overline{f} \text{ is the porosity } \overline{n} \text{ and } \overline{f} \text$$

refer to the porous medium and the fluid respectively.

The basic steady state is assumed to the quiescent and we consider the solution of the form, In the fluid laver.

$$[u, v, w, P, T, C_1, C_2] = [0, 0, 0, P_b(z), T_b(z), C_{b1}(z), C_{b2}(z)]$$
(13)
and in the porous layer

$$\left[u_{m}, v_{m}, w_{m}, P_{m}, T_{m}, C_{m1}, C_{m2}\right] = \left[0, 0, 0, P_{mb}\left(z_{m}\right), T_{mb}\left(z_{m}\right), C_{mb1}\left(z_{m}\right), C_{mb2}\left(z_{m}\right)\right]$$
(14) where

the subscript b' denotes the basic state.

The temperature distributions $T_b(z)$, $T_{mb}(z_m)$ are found to be

$$T_b(z) = T_0 + \frac{\left(T_u - T_0\right)z}{d} \text{ in } \boxed{0 \le z \le d}$$
(15)

$$T_{mb}\left(z_{m}\right) = T_{0} - \frac{\left(T_{l} - T_{0}\right)z_{m}}{d_{m}} \text{ in } \boxed{0 \le z_{m} \le d_{m}}$$

$$(16)$$

$$T_0 = \frac{\kappa d_m T_u + \kappa_m dT_l}{\kappa d_m + \kappa_m d}$$
 is the interface temperature.

The concentration distributions $C_{b1}(z)$, $C_{mb1}(z_m)$, $C_{b2}(z)$ and $C_{mb2}(z_m)$, are found to be

$$-\frac{\partial C_{b1}}{\partial z} = \frac{C_{10} - C_{1u}}{d} h(z) \quad \text{in} \quad 0 \le z \le d$$

$$-\frac{\partial C_{mb1}}{\partial z_m} = \frac{C_{1L} - C_{10}}{d_m} h_m(z_m) \quad \text{in} \quad 0 \le z_m \le d_m$$
(17)
(18)

$$C_{b2}(z) = C_{20} + \frac{(C_{2u} - C_{20})z}{d} \text{ in } 0 \le z \le d$$

$$C_{mb2}(z_m) = C_{20} - \frac{(C_{2l} - C_{20})z_m}{d} \text{ in } 0 \le z_m \le d_m$$
(19)
(20) where

 d_m $h_m(z_m)$ are salinity gradients in fluid and porous layers respectively At the interface $h(z) = h_m(z_m)$ and h(z). $C_0 = \frac{\kappa_s d_m C_u + \kappa_{sm} dC_l}{\kappa_s d_m + \kappa_{sm} d}$

$$\frac{1}{md}$$
 is concentration at the interface.

In order to investigate the stability of the basic solution, infinitesimal disturbances are introduced in the form, $\left[\vec{q}, P, T, C_{1}, C_{2}\right] = \left[0, P_{b}(z), T_{b}(z), C_{b1}(z), C_{b2}(z)\right] + \left[\vec{q}', P', \theta, S_{1}, S_{2}\right]$ (21)

$$\begin{bmatrix} \vec{q}_m, P_m, T_m, C_{m1}, C_{m2} \end{bmatrix} = \begin{bmatrix} 0, P_{mb}(z_m), T_{mb}(z_m), C_{mb1}(z_m), C_{mb2}(z_m) \end{bmatrix} + \begin{bmatrix} \vec{q}'_m, P'_m, \theta_m, S_{m1}, S_{m2} \end{bmatrix}$$

The primed quantities in the above equations are the

perturbed ones over their equilibrium counterparts. Eqs.(21) and (22) are substituted into the Eqs.(1) to (12) and are linearized in the usual manner, the pressure term is eliminated from (2) and (8) by taking curl twice on these two equations and only the vertical component is retained. The separate length scales are chosen for the two layers (following Chen and Chen [2],

Retrieval Number: F11590886S19/2019©BEIESP DOI:10.35940/ijeat.F1159.0886S19 Journal Website: <u>www.ijeat.org</u>

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

(22)

D.A Nield [7]), so that each layer is of unit depth with

$$\left[(x, y, z) = d(x', y', z') \right]_{\text{and}} \left[(x_m, y_m, z_m) = d_m(x'_m, y'_m, z'_m - 1) \right]$$

 ∂z_m

Nield [7])and denoting the differential operator

problem consisting of the following ordinary differential

equations is obtained for the first concentration

by D and D_m

distribution is obtained as below,

and

respectively, an Eigen value

In this manner the detailed flow fields in both the fluid and porous layers can be clearly obtained for all the depth ratios $\hat{d} = \frac{d_m}{d}$. The non dimensionalised basic

equations are subjected to normal mode expansion and we seek solutions for the dependent variables in the fluid and porous layers (following Venkatachalappa M et al [20]). Assuming that the principle of exchange of instabilities holds for the superposed layers (following $In[0 \le z \le 1]$

$$\left[\left(D^2 - a^2 \right)^2 W = Ra^2 \Theta - R_{s1} a^2 \Sigma_1 - R_{s2} a^2 \Sigma_2 \right]$$

$$\left[\left(D^2 - a^2 \right) \Theta + W = 0 \right]$$
(23)
(24)

$$\tau_1 \left(D^2 - a^2 \right) \Sigma_1 + Wh(z) = 0$$

$$\tau_2 \left(D^2 - a^2 \right) \Sigma_2 + W = 0$$
(25)
(26)

$$\frac{\left[\left(D_{m}^{2}-a_{m}^{2}\right)\hat{\mu}\beta^{2}-1\right]\left(D_{m}^{2}-a_{m}^{2}\right)W_{m}=R_{m}a_{m}^{2}\Theta_{m}-R_{sm1}a_{m}^{2}\Sigma_{m1}-R_{sm2}a_{m}^{2}\Sigma_{m2}\right]}{\left(D_{m}^{2}-a_{m}^{2}\right)\Theta_{m}+W_{m}=0}$$
(27)

(28)

$$\frac{\tau_{pm1} \left(D_m^2 - a_m^2 \right) \Sigma_{m1} + W_m h_m \left(z_m \right) = 0}{\left[z_{pm1} \left(D_m^2 - a_m^2 \right) \Sigma_{m1} + W_m h_m \left(z_m \right) = 0 \right]}$$
(29)

$$\frac{\tau_{pm2} \left(D_m^2 - a_m^2 \right) \Sigma_{m2} + W_m = 0}{(30)}$$

For the fluid layer,
$$R = \frac{g\alpha_{i}(T_{0} - T_{u})d^{3}}{v\kappa}$$
 is the Rayleigh number,
$$R_{s1} = \frac{g\alpha_{s1}(C_{10} - C_{1u})d^{3}}{v\kappa}$$
,
$$R_{s2} = \frac{g\alpha_{s2}(C_{20} - C_{2u})d^{3}}{v\kappa}$$
 are the Solute Rayleigh numbers,
$$\overline{\tau_{1} = \frac{K_{s1}}{\kappa}, \tau_{2} = \frac{K_{s2}}{\kappa}}$$
 are the diffusivity ratios. For the porous layer,
$$\beta^{2} = \frac{K}{d_{m}^{2}} = Da$$
 is the Darcy number,
$$\widehat{\mu} = \frac{v_{m}}{v}$$
 is the viscosity ratio
$$R_{m} = \frac{g\alpha_{i}(T_{0} - T_{u})d_{m}K}{v\kappa_{m}} = RDa$$
 is the Rayleigh – Darcy number,
$$R_{sm1} = \frac{g\alpha_{s1}(C_{1l} - C_{10})d_{m}K}{v\kappa_{m}} = R_{s1}Da$$
 is the Solute Rayleigh – Darcy number in porous medium
$$\tau_{pm1} = \frac{K_{sm1}}{\kappa_{m}}, \tau_{pm2} = \frac{K_{sm2}}{\kappa_{m}}$$
 are the diffusivity ratios, \widehat{a} and \widehat{a}_{m} are the non-dimensional horizontal wave numbers \widehat{a} and \widehat{b}_{m} are the temperature in fluid and porous layers, \widehat{S} and \widehat{S}_{m} are the concentration in fluid and porous layers and
$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} h(z)dz = \int_{0}^{1} h_{m}(z_{m})dz_{m} = 1.$$

Eqns. (23) to (30) are twentieth order ordinary differential equation which are to be solved using the below mentioned boundary conditions.

Retrieval Number: F11590886S19/2019©BEIESP DOI:10.35940/ijeat.F1159.0886S19 Journal Website: <u>www.ijeat.org</u>

Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

Published By:

III. **BOUNDARY CONDITIONS**

The boundary conditions after non-dimensionalisation and Normal mode expansion are

$$\begin{split} W(1) &= 0, \ DW(1) = 0, \ D\Theta(1) = 0, \ DS_1(1) = 0, \ DS_2(1) = 0, \ D_m S_{m1}(0) = 0, \ D_m S_{m2}(0) = 0, \\ \hat{T}W(0) &= W_m(1), \ \hat{T}\hat{d}DW(0) = D_m W_m(1), \ \hat{T}\hat{d}^2 \left(D^2 + a^2\right) W(0) = \hat{\mu} \left(D_m^2 + a_m^2\right) W_m(1) \\ \Theta(0) &= \hat{T}\Theta_m(1), \ D\Theta(0) = D_m \Theta_m(1), \ S_1(0) = \hat{S}S_{m1}(1), \ DS_1(0) = D_m S_{m1}(1) \\ S_2(0) &= \hat{S}S_{m2}(1), \ DS_2(0) = D_m S_{m2}(1), \ W_m(0) = 0, \ D_m W_m(0) = 0, \ D_m \Theta_m(0) = 0, \\ \hat{T}\hat{d}^2 \beta^2 \left(D^3 W(0) - 3a^2 D W(0)\right) = -D_m W_m(1) + \hat{\mu}\beta^2 \left(D_m^3 W_m(1) - 3a_m^2 D_m W_m(1)\right) \end{split}$$

ĥ

$$\hat{T} = (T_l - T_0) / (T_0 - T_u), \quad \hat{\kappa}_s = \kappa_{sm} / \kappa_s = \hat{d} / \hat{S}, \quad \hat{S}_i = (C_{il} - C_{i0}) / (C_{i0} - C_{iu}) \quad \text{for} \quad i = 1, 2$$

$$= \kappa_m / \kappa = \hat{d} / \hat{T}, \quad \hat{\kappa}_{s1} = \kappa_{sm1} / \kappa_{s1} = \hat{d} / \hat{S}_1 \quad \text{and} \quad \hat{\kappa}_{s2} = \kappa_{sm2} / \kappa_{s2} = \hat{d} / \hat{S}_2. \quad \hat{\kappa}, \quad \hat{\kappa}_{s1} \quad \text{and} \quad \hat{\kappa}_{s2} \quad \text{are} \quad \text{the}$$

thermal diffusivity and the solutal diffusivity ratios respectively. The Energy Equations are solved using respective boundary conditions from (29) (following Shivakumara I.S et al [15]).

SOLUTION BY REGULAR PERTURBATION IV. **TECHNIQUE**

For the constant heat and mass flux boundaries convection sets in at small values of horizontal wavenumber 'a', accordingly, we expand

$$\begin{bmatrix} W\\ \Theta\\ \Sigma_1\\ \Sigma_2 \end{bmatrix} = \sum_{j=0}^{\infty} a^{2j} \begin{bmatrix} W_j\\ \Theta_j\\ \Sigma_{j1}\\ \Sigma_{j2} \end{bmatrix} \quad and \quad \begin{bmatrix} W_m\\ \Theta_m\\ \Sigma_{m1}\\ \Sigma_{m2} \end{bmatrix} = \sum_{j=0}^{\infty} a^{2j} \begin{bmatrix} W_{mj}\\ \Theta_{mj}\\ \Sigma_{mj1}\\ \Sigma_{mj2} \end{bmatrix}$$

With an arbitrary factor, the solutions for zero order equations are:

$$W_{0}(z) = 0, \quad \Theta_{0}(z) = \hat{T}, \quad \Sigma_{10}(z) = \hat{S}_{1}, \quad \Sigma_{20}(z) = \hat{S}_{2}$$
$$W_{m0}(z_{m}) = 0, \quad \Theta_{m0}(z_{m}) = 1, \quad \Sigma_{m10}(z_{m}) = 1, \quad \Sigma_{m20}(z_{m}) = 1$$

The equations at first order in a^2 are, For fluid layer.

$$\frac{D^4 W_1 - R\hat{T} + R_{s1}\hat{S}_1 + R_{s2}\hat{S}_2 = 0}{\hat{I}_1 + \hat{I}_2 + \hat{$$

$$\frac{D^2 \Theta_1 - \hat{T} + W_1 = 0}{\tau D^2 \Sigma_1 - \tau \hat{S} + W h(\tau) = 0}$$
(32)

$$\frac{\tau_1 D \ \Sigma_{11} - \tau_1 S_1 + W_1 n(z) - 0}{\tau_2 D^2 \Sigma_{21} - \tau_2 \hat{S}_2 + W_1 = 0}$$
(33)
(34)

For porous layer,

$$\hat{\mu}\beta^2 D_m^4 W_{m1} - D_m^2 W_{m1} - R_m + R_{sm1} + R_{sm2} = 0$$

$$D_m^2 \Theta_{m1} - 1 + W_{m1} = 0$$
(35)
(36)

The corresponding boundary conditions are,

(38)

Retrieval Number: F11590886S19/2019©BEIESP DOI:10.35940/ijeat.F1159.0886S19 Journal Website: <u>www.ijeat.org</u>

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

(37)

$$\begin{split} W_{1}(1) &= 0, \ DW_{1}(1) = 0, \ D\Theta_{1}(1) = 0, \ DS_{1}(1) = 0, \ DS_{2}(1) = 0 \\ \hat{T}W_{1}(0) &= \hat{d}^{2}W_{m1}(1), \ \hat{T}\hat{d}DW_{1}(0) = \hat{d}^{2}D_{m}W_{m1}(1), \ \hat{T}\hat{d}^{2}D^{2}W_{1}(0) = \hat{\mu}D_{m}^{2}W_{m1}(1)\hat{d}^{2}, \\ \Theta_{1}(0) &= \hat{T}\hat{d}^{2}\Theta_{m1}(1), \ D\Theta_{1}(0) = \hat{d}^{2}D_{m}\Theta_{m1}(1), \\ S_{1}(0) &= \hat{S}_{1}\hat{d}^{2}S_{m1}(1), \ DS_{1}(0) = \hat{d}^{2}D_{m}S_{m1}(1), \ S_{2}(0) = \hat{S}_{1}\hat{d}^{2}S_{m2}(1), \\ \hat{T}\hat{d}^{3}\beta^{2}D^{3}W_{1}(0) &= -\hat{d}^{2}D_{m}W_{m1}(1) + \hat{\mu}\beta^{2}\hat{d}^{2}D_{m}^{3}W_{m1}(1), \ DS_{2}(0) = \hat{d}^{2}D_{m}S_{m2}(1), \\ W_{m1}(0) &= 0, \ D_{m}W_{m1}(0) = 0, \ D_{m}\Theta_{m1}(0) = 0, \ D_{m}S_{m1}(0) = 0, \ D_{m}S_{m2}(0) = 0 \end{split}$$

The solutions of the Eqs.(32) and (36) give W_1 and W_{m1} respectively are important in obtaining the Eigen values and are found to be,

$$W_{1}(z) = C_{1} + C_{2}z + C_{3}z^{2} + C_{4}z^{3} + \left(R\hat{T} - R_{s1}\hat{S}_{1} - R_{s2}\hat{S}_{2}\right)\frac{z^{4}}{24}$$
(39)

$$\frac{W_{m1}(z_m) = C_5 + C_6 z_m + C_7 e^{pz_m} + C_7 e^{-pz_m} - (R_m - R_{sm1} - R_{sm2}) \frac{z_m^2}{2}}{2}$$
(40)

Where $p = \sqrt{\frac{1}{\hat{\mu}\beta^2}}$ and $C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8$ are constants which are determined using the velocity boundary conditions and are as follows

$$\begin{split} C_{1} &= \Delta_{7}C_{7} + \Delta_{8}C_{8} - \frac{\hat{d}^{2}B}{2\hat{T}}, \quad C_{2} &= \Delta_{5}C_{7} + \Delta_{6}C_{8} - \frac{\hat{d}^{2}B}{\hat{T}}, \quad C_{3} &= \Delta_{3}C_{7} + \Delta_{4}C_{8} - \frac{\hat{\mu}B}{2\hat{T}}, \\ C_{4} &= \Delta_{1}C_{7} + \Delta_{2}C_{8} + \frac{B}{6\hat{T}\hat{d}\beta^{2}}, \quad C_{5} &= -C_{7} - C_{8}, \quad C_{6} &= pC_{8} - pC_{7}, \quad C_{7} &= A\Delta_{17} + B\Delta_{18}, \\ C_{8} &= A\Delta_{15} + B\Delta_{16}, \quad A &= R\hat{T} - R_{s1}\hat{S}_{1} - R_{s2}\hat{S}_{2}, \quad B &= R_{m} - R_{sm1} - R_{sm2}, \\ \overline{\Delta_{1}} &= \frac{\hat{\mu}\beta^{2}p^{3}e^{p} - pe^{p} + p}{6\hat{T}\hat{d}\beta^{2}}, \quad \Delta_{2} &= \frac{pe^{-p} - p - \hat{\mu}\beta^{2}p^{3}e^{-p}}{6\hat{T}\hat{d}\beta^{2}} \end{split}$$

$$\begin{split} &\Delta_{3} = \frac{\hat{\mu}p^{2}e^{p}}{2\hat{T}}, \quad \Delta_{4} = \frac{\hat{\mu}p^{2}e^{-p}}{2\hat{T}}, \quad \Delta_{5} = \frac{\hat{d}}{\hat{T}}(pe^{p}-p), \quad \Delta_{6} = \frac{\hat{d}}{\hat{T}}(p-pe^{-p}), \quad \Delta_{7} = \frac{\hat{d}^{2}}{\hat{T}}(e^{p}-p-1), \\ &\Delta_{8} = \frac{\hat{d}^{2}}{\hat{T}}(e^{-p}-p-1), \quad \Delta_{9} = \Delta_{7} + \Delta_{5} + \Delta_{3} + \Delta_{1}, \quad \Delta_{10} = \Delta_{8} + \Delta_{6} + \Delta_{4} + \Delta_{2}, \\ &\Delta_{11} = \frac{1}{6\hat{T}\hat{d}\beta^{2}} - \frac{\hat{\mu}}{2\hat{T}} - \frac{\hat{d}}{\hat{T}} - \frac{\hat{d}^{2}}{2\hat{T}}, \quad \Delta_{12} = \Delta_{5} + 2\Delta_{3} + 3\Delta_{1}, \quad \Delta_{13} = \Delta_{6} + 2\Delta_{4} + 3\Delta_{2}, \\ &\Delta_{14} = \frac{1}{2\hat{T}\hat{d}\beta^{2}} - \frac{\hat{d}}{\hat{T}} - \frac{\hat{\mu}}{\hat{T}}, \quad \Delta_{15} = \frac{\frac{\Delta_{9}}{6} - \frac{\Delta_{12}}{24}}{\Delta_{10}\Delta_{12} - \Delta_{9}\Delta_{13}}, \quad \Delta_{16} = \frac{\Delta_{9}\Delta_{14} - \Delta_{11}\Delta_{12}}{\Delta_{10}\Delta_{12} - \Delta_{9}\Delta_{13}}, \\ &\Delta_{17} = -\left(\frac{\Delta_{10}\Delta_{15}}{\Delta_{9}} + \frac{1}{24\Delta_{9}}\right), \quad \Delta_{18} = -\left(\frac{\Delta_{10}\Delta_{16} + \Delta_{11}}{\Delta_{9}}\right), \quad \Delta_{19} = \Delta_{7}\Delta_{17} + \Delta_{15}\Delta_{8}, \end{split}$$

Retrieval Number: F11590886S19/2019©BEIESP DOI:10.35940/ijeat.F1159.0886S19 Journal Website: <u>www.ijeat.org</u>

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

$$\begin{split} \Delta_{20} &= \Delta_{7} \Delta_{18} + \Delta_{16} \Delta_{8} - \frac{\hat{d}^{2}}{2\hat{T}}, \quad \Delta_{21} = \Delta_{5} \Delta_{17} + \Delta_{15} \Delta_{6}, \quad \Delta_{22} = \Delta_{5} \Delta_{18} + \Delta_{16} \Delta_{6} - \frac{\hat{d}}{\hat{T}}, \quad \Delta_{28} = -\Delta_{18} - \Delta_{16}, \\ \Delta_{23} &= \Delta_{3} \Delta_{17} + \Delta_{15} \Delta_{4}, \quad \Delta_{24} = \Delta_{3} \Delta_{18} + \Delta_{16} \Delta_{4} - \frac{\hat{\mu}}{2\hat{T}}, \quad \Delta_{25} = \Delta_{1} \Delta_{17} + \Delta_{15} \Delta_{2}, \quad \Delta_{30} = p \left(\Delta_{16} - \Delta_{18} \right) \\ \Delta_{26} &= \Delta_{1} \Delta_{18} + \Delta_{16} \Delta_{2} + \frac{1}{6\hat{T}\hat{d}\beta^{2}}, \quad \Delta_{27} = -\Delta_{17} - \Delta_{15}, \quad \Delta_{29} = p \left(\Delta_{15} - \Delta_{17} \right). \end{split}$$

4.1 Solvability condition

The differential equations and boundary conditions corresponding to temperature and concentrations yield the compatibility condition $\begin{bmatrix} 1 & & & 1 \\ 1 & & & 1 \end{bmatrix}$

$$\frac{\int_{0}^{0} W_{1} dz + \tau_{pm1} \int_{0}^{0} W_{1} h(z) dz + \hat{d}^{2} \int_{0}^{0} W_{m1} dz_{m} + \tau_{1} \hat{d}^{2} \int_{0}^{0} W_{m1} h_{m}(z_{m}) dz_{m} + \tau_{pm2} \int_{0}^{0} W_{1} dz + \tau_{2} \hat{d}^{2} \int_{0}^{0} W_{m1} dz_{m}}{\left[= \hat{T} + \hat{d}^{2} + \tau_{1} \tau_{pm1} \left(\hat{S}_{1} + \hat{d}^{2} \right) + \tau_{2} \tau_{pm2} \left(\hat{S}_{2} + \hat{d}^{2} \right) \right]}$$

$$(41)$$

By substituting expressions for W_1 and W_{m1} in equation (41), we obtain an expression for critical Rayleigh

number for different basic salinity profiles in both fluid and porous layers.

(42)

4.2 Linear Salinity Profile:

In this profile $h(z) = h_m(z_m) = 1$

The critical Rayleigh number for this model is obtained by substituting (42) in (41) and is found to be

$$R_{c1} = \frac{\delta_7 + (R_{s1}\hat{S}_1 + R_{s2}\hat{S}_2)\delta_5 + (R_{sm1} + R_{sm2})\delta_6}{\hat{T}\left(\delta_5 + \frac{\hat{d}^3\beta^2\delta_6}{\kappa}\right)}$$

where

$$\begin{split} \delta_{1} &= \Delta_{19} + \frac{\Delta_{21}}{2} + \frac{\Delta_{23}}{3} + \frac{\Delta_{25}}{4} + \frac{1}{120}, \quad \delta_{2} &= \Delta_{20} + \frac{\Delta_{22}}{2} + \frac{\Delta_{24}}{3} + \frac{\Delta_{26}}{4}, \\ \\ & \delta_{3} &= \Delta_{27} + \frac{\Delta_{29}}{2} + \Delta_{17} \left(\frac{e^{p} - 1}{p}\right) + \Delta_{15} \left(\frac{1 - e^{-p}}{p}\right), \\ \delta_{4} &= \Delta_{28} + \frac{\Delta_{30}}{2} + \Delta_{18} \left(\frac{e^{p} - 1}{p}\right) + \Delta_{16} \left(\frac{1 - e^{-p}}{p}\right) - \frac{1}{6}, \quad \delta_{5} &= \left(1 + \tau_{pm1} + \tau_{pm2}\right) \delta_{1} + \hat{d}^{2} \left(1 + \tau_{1} + \tau_{2}\right) \delta_{3}, \\ \delta_{6} &= \left(1 + \tau_{pm1} + \tau_{pm2}\right) \delta_{2} + \hat{d}^{2} \left(1 + \tau_{1} + \tau_{2}\right) \delta_{4}, \quad \delta_{7} &= \hat{T} + \hat{d}^{2} + \tau_{1} \tau_{pm1} \left(\hat{S} + \hat{d}^{2}\right) + \tau_{2} \tau_{pm2} \left(\hat{S}_{2} + \hat{d}^{2}\right). \\ \hline \Delta^{\frac{1}{5}} &= c = c = c \\ \hline \Delta_{28} &= c \\ \hline \Delta_{28} &=$$

 Δ_i^{s} remains same as earlier.

4.3 Parabolic salinity profile:

Following Sparrow et al [18],
$$h(z) = 2z$$
, $h_m(z_m) = 2z_m$
The critical Rayleigh number for this model is obtained by substituting (43) in (41) and is found to be

$$R_{c2} = \frac{\delta_1 + (R_{s1}\hat{S}_1 + R_{s2}\hat{S}_2)A_2 + (R_{sm1} + R_{sm2})A_3}{\hat{T}\left(A_2 + \frac{\hat{d}^3\beta^2 A_3}{\kappa}\right)}$$

where

Retrieval Number: F11590886S19/2019©BEIESP DOI:10.35940/ijeat.F1159.0886S19 Journal Website: <u>www.ijeat.org</u> Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

(43)

$$\begin{split} & A_{2} = \Delta_{19}\delta_{2} + \Delta_{21}\delta_{3} + \Delta_{23}\delta_{4} + \Delta_{25}\delta_{5} + \delta_{6} + \Delta_{27}\delta_{7} + \Delta_{29}\delta_{8} + \Delta_{17}\delta_{9} + \Delta_{15}\delta_{10} \\ & A_{3} = \Delta_{20}\delta_{2} + \Delta_{22}\delta_{3} + \Delta_{24}\delta_{4} + \Delta_{26}\delta_{5} + \Delta_{28}\delta_{7} + \Delta_{30}\delta_{8} + \Delta_{19}\delta_{9} - \delta_{11} \\ \hline \delta_{1} = \hat{T} + \hat{d}^{2} + \tau_{1}\tau_{pm1}\left(\hat{S} + \hat{d}^{2}\right) + \tau_{2}\tau_{pm2}\left(\hat{S}_{2} + \hat{d}^{2}\right) \\ & \delta_{2} = 1 + \tau_{pm1} + \tau_{pm2}, \quad \delta_{3} = \frac{2\tau_{pm1}}{3} + \frac{1 + \tau_{pm2}}{2}, \quad \delta_{4} = \frac{\tau_{pm1}}{2} + \frac{1 + \tau_{pm2}}{3}, \quad \delta_{5} = \frac{2\tau_{pm1}}{5} + \frac{1 + \tau_{pm2}}{4}, \\ & \delta_{6} = \frac{\tau_{pm1}}{72} + \frac{1 + \tau_{pm2}}{120}, \quad \delta_{7} = \hat{d}^{2}\left(1 + \tau_{1} + \tau_{2}\right), \quad \delta_{8} = \hat{d}^{2}\left(\frac{2\tau_{1}}{3} + \frac{1 + \tau_{2}}{2}\right), \\ & \delta_{9} = \hat{d}^{2}\left(2\tau_{1}\left(\frac{e^{p}}{p} - \frac{e^{p}}{p^{2}} + \frac{1}{p^{2}}\right) + \left(1 + \tau_{2}\right)\frac{\left(1 - e^{-p}\right)}{p}\right), \quad \delta_{11} = \hat{d}^{2}\left(\frac{\tau_{1}}{4} + \frac{1 + \tau_{2}}{6}\right) \\ & \delta_{10} = \hat{d}^{2}\left(2\tau_{1}\left(\frac{e^{-p}}{p} - \frac{e^{-p}}{p^{2}} + \frac{1}{p^{2}}\right) + \left(1 + \tau_{2}\right)\frac{\left(1 - e^{-p}\right)}{p}\right), \quad \delta_{11} = \hat{d}^{2}\left(\frac{\tau_{1}}{4} + \frac{1 + \tau_{2}}{6}\right) \\ & \delta_{10} = \hat{d}^{2}\left(2\tau_{1}\left(\frac{e^{-p}}{p} - \frac{e^{-p}}{p^{2}} + \frac{1}{p^{2}}\right) + \left(1 + \tau_{2}\right)\frac{\left(1 - e^{-p}\right)}{p}\right), \quad \delta_{11} = \hat{d}^{2}\left(\frac{\tau_{1}}{4} + \frac{1 + \tau_{2}}{6}\right) \\ & \delta_{10} = \hat{d}^{2}\left(2\tau_{1}\left(\frac{e^{-p}}{p} - \frac{e^{-p}}{p^{2}} + \frac{1}{p^{2}}\right) + \left(1 + \tau_{2}\right)\frac{\left(1 - e^{-p}\right)}{p}\right), \quad \delta_{11} = \hat{d}^{2}\left(\frac{\tau_{1}}{4} + \frac{1 + \tau_{2}}{6}\right) \\ & \delta_{10} = \hat{d}^{2}\left(2\tau_{1}\left(\frac{e^{-p}}{p} - \frac{e^{-p}}{p^{2}} + \frac{1}{p^{2}}\right) + \left(1 + \tau_{2}\right)\frac{\left(1 - e^{-p}\right)}{p}\right), \quad \delta_{11} = \hat{d}^{2}\left(\frac{\tau_{1}}{4} + \frac{1 + \tau_{2}}{6}\right) \\ & \delta_{10} = \hat{d}^{2}\left(\frac{\tau_{1}}{4} + \frac{\tau_{1}}{6}\right) \\ & \delta_{10} = \hat{d}$$

 Δ_i^{s} remains same as earlier.

4.4 Inverted Parabolic salinity profile:

For this case
$$h(z) = 2(1-z)$$
, $h_m(z_m) = 2(1-z_m)$ (44)
The critical Rayleigh number for this model is obtained by substituting (44) in (41) and is found to be
$$R_{c3} = \frac{\delta_1 + (R_{s1}\hat{S}_1 + R_{s2}\hat{S}_2)A_2 + (R_{sm1} + R_{sm2})A_3}{\hat{T}\left(A_2 + \frac{\hat{d}^3\beta^2 A_3}{\kappa}\right)}$$

Where

$$\begin{split} & \overline{A_{2}} = \Delta_{19}\delta_{2} + \Delta_{21}\delta_{3} + \Delta_{23}\delta_{4} + \Delta_{25}\delta_{5} + \delta_{6} + \Delta_{27}\delta_{7} + \Delta_{29}\delta_{8} + \Delta_{17}\delta_{9} + \Delta_{15}\delta_{10} \\ & A_{3} = \Delta_{20}\delta_{2} + \Delta_{22}\delta_{3} + \Delta_{24}\delta_{4} + \Delta_{26}\delta_{5} + \Delta_{28}\delta_{7} + \Delta_{30}\delta_{8} + \Delta_{19}\delta_{9} - \delta_{11} \\ \hline \delta_{1} = \hat{T} + \hat{d}^{2} + \tau_{1}\tau_{pm1}\left(\hat{S} + \hat{d}^{2}\right) + \tau_{2}\tau_{pm2}\left(\hat{S}_{2} + \hat{d}^{2}\right) \\ & \delta_{2} = 1 + \tau_{pm1} + \tau_{pm2}, \quad \delta_{3} = \frac{\tau_{pm1}}{3} + \frac{1 + \tau_{pm2}}{2}, \quad \delta_{4} = \frac{\tau_{pm1}}{6} + \frac{1 + \tau_{pm2}}{3}, \quad \delta_{5} = \frac{\tau_{pm1}}{60} + \frac{1 + \tau_{pm2}}{4}, \\ & \delta_{6} = \tau_{pm1}\left(\frac{1}{120} - \frac{1}{144}\right) + \frac{1 + \tau_{pm2}}{120}, \quad \delta_{7} = \hat{d}^{2}\left(1 + \tau_{1} + \tau_{2}\right), \quad \delta_{8} = \hat{d}^{2}\left(\frac{\tau_{1}}{3} + \frac{1 + \tau_{2}}{2}\right), \\ & \delta_{9} = \hat{d}^{2}\left(2\tau_{1}\left(\frac{e^{p} - 1}{p^{2}} + \frac{1}{p}\right) + \left(1 + \tau_{2}\right)\frac{\left(e^{p} - 1\right)}{p}\right), \\ & \delta_{10} = \hat{d}^{2}\left(2\tau_{1}\left(\frac{e^{-p} - 1}{p^{2}} + \frac{1}{p}\right) + \left(1 + \tau_{2}\right)\frac{\left(1 - e^{-p}\right)}{p}\right), \quad \delta_{11} = \hat{d}^{2}\left(\frac{\tau_{1}}{12} + \frac{1 + \tau_{2}}{6}\right) \\ & = \frac{1}{2}\left(\frac{1}{2}+\frac{1 + \tau_{2}}{2}\right) + \frac{1}{2}\left(\frac{1 + \tau_{2}}{2}\right)\left(\frac{1 - e^{-p}}{p}\right) + \frac{1}{2}\left(\frac{1 + \tau_{2}}{2}\right)\left(\frac{1 - e^{-p}}{p}\right)\right) \\ & = \frac{1}{2}\left(\frac{1 + \tau_{2}}{p^{2}} + \frac{1}{p}\right) + \frac{1}{2}\left(1 + \tau_{2}\right)\left(\frac{1 - e^{-p}}{p}\right) + \frac{1}{2}\left(1 + \frac{1}{2}\right)\left(\frac{1 + \tau_{2}}{2}\right)\left(\frac{\tau_{1}}{p^{2}} + \frac{1}{2}\right)\left(\frac{\tau_{1}}{p^{2}} + \frac{\tau_{2}}{2}\right) \\ & = \frac{1}{2}\left(\frac{1 + \tau_{2}}{p^{2}} + \frac{1}{p}\right) + \frac{1}{2}\left(1 + \tau_{2}\right)\left(\frac{1 - e^{-p}}{p}\right) + \frac{1}{2}\left(1 + \frac{\tau_{2}}{2}\right)\left(\frac{\tau_{1}}{p^{2}} + \frac{\tau_{2}}{2}\right) \\ & = \frac{1}{2}\left(\frac{\tau_{1}}{p^{2}} + \frac{1}{p}\right) + \frac{1}{2}\left(1 + \frac{\tau_{2}}{p^{2}}\right)\left(\frac{\tau_{1}}{p^{2}} + \frac{\tau_{2}}{p^{2}}\right) + \frac{1}{2}\left(\frac{\tau_{1}}{p^{2}} + \frac{\tau_{2}}{p^{2}}\right) \\ & = \frac{1}{2}\left(\frac{\tau_{1}}{p^{2}} + \frac{\tau_{2}}{p^{2}}\right) + \frac{1}{2}\left(\frac{\tau_{1}}{p^{2}} + \frac{\tau_{2}}{p^{2}}\right) \\ & = \frac{1}{2}\left(\frac{\tau_{1}}{p^{2}} + \frac{\tau_{2}}{p^{2}}\right) + \frac{1}{2}\left(\frac{\tau_{1}}{p^{2}} + \frac{\tau_{2}}{p^{2}}\right) \\ & = \frac{1}{2}\left(\frac{\tau_{1}}{p^{2}} + \frac{\tau_{2}}{p^{2}}\right) + \frac{1}{2}\left(\frac{\tau_{1}}{p^{2}} + \frac{\tau_{2}}{p^{2}}\right) \\ & = \frac{1}{2}\left(\frac{\tau_{1}}{p^{2}} + \frac{\tau_{2}}{p^{2}}\right) + \frac{1}{2}\left(\frac{\tau_{1}}{p^{2}} + \frac{\tau_{2}}{p^{2}}\right) \\ & = \frac{1}{2}\left(\frac{\tau_{1}}{p^{2}} + \frac{\tau_{2}}{p^{2}}\right) \\ & = \frac{1}{$$

 Δ_i^{s} remains same as earlier.

ering ESP) ed.

4.5 Piecewise linear Salting below Salinity profile:

For this case following Currie [3],
$$h(z) = \begin{cases} \varepsilon^{-1}, & 0 \le z \le \varepsilon \\ 0, & \varepsilon \le z \le 1 \end{cases}, \quad h_m(z_m) = \begin{cases} \varepsilon_m^{-1}, & 0 \le z_m \le \varepsilon_m \\ 0, & \varepsilon_m \le z_m \le 1 \end{cases}$$
(45)

The critical Rayleigh number for this model is obtained by substituting (45) in (41) and is found to be

$$R_{c4} = \frac{\delta_1 + (R_{s1}\hat{S}_1 + R_{s2}\hat{S}_2)A_2 + (R_{sm1} + R_{sm2})A_3}{\hat{T}\left(A_2 + \frac{\hat{d}^3\beta^2 A_3}{\kappa}\right)}$$

whom

where

$$\begin{aligned} A_{2} &= \Delta_{19}\delta_{2} + \Delta_{21}\delta_{3} + \Delta_{23}\delta_{4} + \Delta_{25}\delta_{5} + \delta_{6} + \Delta_{27}\delta_{7} + \Delta_{29}\delta_{8} + \Delta_{17}\delta_{9} + \Delta_{15}\delta_{10}, \\ A_{3} &= \Delta_{20}\delta_{2} + \Delta_{22}\delta_{3} + \Delta_{24}\delta_{4} + \Delta_{26}\delta_{5} + \Delta_{28}\delta_{7} + \Delta_{30}\delta_{8} + \Delta_{19}\delta_{9} - \delta_{11}, \\ \delta_{1} &= \hat{T} + \hat{d}^{2} + \tau_{1}\tau_{pm1}(\hat{S} + \hat{d}^{2}) + \tau_{2}\tau_{pm2}(\hat{S}_{2} + \hat{d}^{2}), \quad \delta_{2} = 1 + \tau_{pm1} + \tau_{pm2}, \quad \delta_{3} = \frac{1}{2}(\varepsilon\tau_{pm1} + 1 + \tau_{pm2}), \\ \delta_{4} &= \frac{1}{3}(\varepsilon^{2}\tau_{pm1} + 1 + \tau_{pm2}), \quad \delta_{5} = \frac{1}{4}(\varepsilon^{3}\tau_{pm1} + 1 + \tau_{pm2}), \quad \delta_{6} = \frac{1}{120}(\varepsilon^{4}\tau_{pm1} + 1 + \tau_{pm2}), \\ \delta_{7} &= \hat{d}^{2}(1 + \tau_{1} + \tau_{2}), \quad \delta_{8} = \frac{\hat{d}^{2}}{2}(\varepsilon\tau_{1} + 1 + \tau_{2}), \quad \delta_{9} = \frac{\hat{d}^{2}}{p}\left(\frac{\tau_{1}}{\varepsilon_{m}}(e^{p\varepsilon_{m}-1}) + (1 + \tau_{2})(e^{p} - 1)\right), \\ \delta_{10} &= \frac{\hat{d}^{2}}{p}\left(\frac{\tau_{1}}{\varepsilon_{m}}(1 - e^{-p\varepsilon_{m}}) + (1 + \tau_{2})(1 - e^{-p})\right), \quad \delta_{11} = \hat{d}^{2}\left(\frac{\tau_{1}\varepsilon_{m}^{2}}{2} + \frac{(1 + \tau_{2})}{6}\right). \\ \delta_{10}^{\gamma s} &= 1.5 = 1.5.5 \text{ for } \delta_{12}, \delta_{12} = 0.5 \text{ for } \delta_{13} = 0.5 \text{ for } \delta_{13} = 0.5 \text{ for } \delta_{13} = 0.5 \text{ for } \delta_{14} = 0.5 \text{ for } \delta$$

 $|\Delta_i|$ are defined earlier.

4.6 Piecewise linear Salinity profile Desalting above:

For this case following Vidal and Acrivos [21],

$$h(z) = \begin{cases} 0, & 0 \le z \le (1-\varepsilon) \\ \varepsilon^{-1}, & (1-\varepsilon) \le z \le 1 \end{cases}, h_m(z_m) = \begin{cases} 0, & 0 \le z_m \le (1-\varepsilon_m) \\ \varepsilon^{-1}_m, & (1-\varepsilon_m) \le z_m \le 1 \end{cases}$$
(46)

The critical Rayleigh number for this model is obtained by substituting (46) in (41) and is found to be ~ \

$$R_{c5} = \frac{\delta_1 + (R_{s1}\hat{S}_1 + R_{s2}\hat{S}_2)A_2 + (R_{sm1} + R_{sm2})A_3}{\hat{T}\left(A_2 + \frac{\hat{d}^3\beta^2A_3}{\kappa}\right)}$$

where

$$\begin{split} A_{2} &= \Delta_{19}\delta_{2} + \Delta_{21}\delta_{3} + \Delta_{23}\delta_{4} + \Delta_{25}\delta_{5} + \delta_{6} + \Delta_{27}\delta_{7} + \Delta_{29}\delta_{8} + \Delta_{17}\delta_{9} + \Delta_{15}\delta_{10} \\ A_{3} &= \Delta_{20}\delta_{2} + \Delta_{22}\delta_{3} + \Delta_{24}\delta_{4} + \Delta_{26}\delta_{5} + \Delta_{28}\delta_{7} + \Delta_{30}\delta_{8} + \Delta_{19}\delta_{9} - \delta_{11} \end{split}$$

$$\begin{split} &\delta_{1} = \hat{T} + \hat{d}^{2} + \tau_{1}\tau_{pm1}\left(\hat{S} + \hat{d}^{2}\right) + \tau_{2}\tau_{pm2}\left(\hat{S}_{2} + \hat{d}^{2}\right), \quad \delta_{2} = 1 + \tau_{pm1} + \tau_{pm2}, \\ &\delta_{3} = \frac{1}{2} \left(\frac{\tau_{pm1}}{\varepsilon} \left(1 - \left(1 - \varepsilon\right)^{2}\right) + \left(1 + \tau_{pm2}\right)\right), \quad \delta_{4} = \frac{1}{3} \left(\frac{\tau_{pm1}}{\varepsilon} \left(1 - \left(1 - \varepsilon\right)^{3}\right) + \left(1 + \tau_{pm2}\right)\right), \\ &\delta_{5} = \frac{1}{4} \left(\frac{\tau_{pm1}}{\varepsilon} \left(1 - \left(1 - \varepsilon\right)^{4}\right) + \left(1 + \tau_{pm2}\right)\right), \quad \delta_{6} = \frac{1}{120} \left(\frac{\tau_{pm1}}{\varepsilon} \left(1 - \left(1 - \varepsilon\right)^{5}\right) + \left(1 + \tau_{pm2}\right)\right), \\ &\delta_{7} = \hat{d}^{2} \left(1 + \tau_{1} + \tau_{2}\right), \quad \delta_{8} = \frac{\hat{d}^{2}}{2} \left(\frac{\tau_{1}}{\varepsilon_{m}} \left(1 - \left(1 - \varepsilon_{m}\right)^{2}\right) + \left(1 + \tau_{2}\right)\right), \\ &\delta_{9} = \frac{\hat{d}^{2}}{p} \left(\frac{\tau_{1}}{\varepsilon_{m}} \left(e^{p} - e^{p(1 - \varepsilon_{m})}\right) + \left(1 + \tau_{2}\right)\left(e^{p} - 1\right)\right), \quad \delta_{10} = \frac{\hat{d}^{2}}{p} \left(\frac{\tau_{1}}{\varepsilon_{m}} \left(-e^{-p} + e^{-p(1 - \varepsilon_{m})}\right) + \left(1 + \tau_{2}\right)\left(1 - e^{-p}\right)\right), \\ &\delta_{11} = \frac{\hat{d}^{2}}{6} \left(\tau_{1} \left(\left(1 - \varepsilon_{m}\right)^{3} - 1\right) + \left(1 + \tau_{2}\right)\right). \end{split}$$

are defined earlier.

4.7 Step function salinity profile:

In this profile the basic concentration/solute/salt drops suddenly by an amount
$$\Delta S$$
 at $\overline{z = \varepsilon}$ and ΔS_m at $\overline{z_m} = \varepsilon_m$
otherwise uniform. Accordingly, $h(z) = \delta(z - \varepsilon)$, $h_m(z_m) = \delta(z_m - \varepsilon_m)$ (47)
where ε is the solutal depth in the fluid layer and ε_m is the solutal depth in the porous layer.

The critical Rayleigh number for this model is obtained by substituting (47) in (41) and is found to be

$$R_{c6} = \frac{\delta_1 + \left(R_{s1}\hat{S}_1 + R_{s2}\hat{S}_2\right)A_2 + \left(R_{sm1} + R_{sm2}\right)A_3}{\hat{T}\left(A_2 + \frac{\hat{d}^3\beta^2A_3}{\kappa}\right)}$$

where

$$\begin{split} & A_{2} = \Delta_{19}\delta_{2} + \Delta_{21}\delta_{3} + \Delta_{23}\delta_{4} + \Delta_{25}\delta_{5} + \delta_{6} + \Delta_{27}\delta_{7} + \Delta_{29}\delta_{8} + \Delta_{17}\delta_{9} + \Delta_{15}\delta_{10} \\ & A_{3} = \Delta_{20}\delta_{2} + \Delta_{22}\delta_{3} + \Delta_{24}\delta_{4} + \Delta_{26}\delta_{5} + \Delta_{28}\delta_{7} + \Delta_{30}\delta_{8} + \Delta_{19}\delta_{9} - \delta_{11} \\ \hline \delta_{1} = \hat{T} + \hat{d}^{2} + \tau_{1}\tau_{pm1}\left(\hat{S} + \hat{d}^{2}\right) + \tau_{2}\tau_{pm2}\left(\hat{S}_{2} + \hat{d}^{2}\right), \quad \delta_{2} = 1 + \tau_{pm1} + \tau_{pm2}, \quad \delta_{3} = \varepsilon\tau_{pm1} + \frac{1 + \tau_{pm2}}{2}, \\ \delta_{4} = \varepsilon^{2}\tau_{pm1} + \frac{1 + \tau_{pm2}}{3}, \quad \delta_{5} = \varepsilon^{3}\tau_{pm1} + \frac{1 + \tau_{pm2}}{4}, \quad \delta_{6} = \frac{\varepsilon^{4}\tau_{pm1}}{24} + \frac{1 + \tau_{pm2}}{120}, \quad \delta_{7} = \hat{d}^{2}\left(1 + \tau_{1} + \tau_{2}\right), \\ \delta_{8} = \hat{d}^{2}\left(\varepsilon_{m}\tau_{1} + \frac{1 + \tau_{2}}{2}\right), \quad \delta_{9} = \hat{d}^{2}\left(\tau_{1}e^{\rho\varepsilon_{m}} + \left(1 + \tau_{2}\right)\frac{\left(e^{p} - 1\right)}{p}\right), \\ \delta_{10} = \hat{d}^{2}\left(\tau_{1}e^{-\rho\varepsilon_{m}} + \left(1 + \tau_{2}\right)\frac{\left(1 - e^{-p}\right)}{p}\right), \quad \delta_{11} = \hat{d}^{2}\left(\frac{\tau_{1}\varepsilon_{m}^{2}}{2} + \frac{\left(1 + \tau_{2}\right)}{6}\right). \end{split}$$

 Δ_i^{s} are defined earlier.

Advanced Tec/ Sunor lenoiten , ww.ijeat.org Exploring Innovation

ı.

V. RESULTS AND DISCUSSIONS

Fig.1. The variation of critical thermal Rayleigh number R_c for Linear, Parabolic and Inverted parabolic salinity profiles with respect to the depth ratio $\hat{d} = \frac{d_m}{d}$.

Figure1 shows the variation of critical Rayleigh number R_c for different profiles with respect to the depth ratio for fixed values of Da = 0.1, $\kappa = 1$, $\mu = 2$, $\tau_1 = \tau_2 = 0.25$, $\tau_{pm1} = \tau_{pm2} = 0.75$, $\hat{S}_1 = \hat{S}_2 = 1$, $R_{s1} = R_{s2} = 5$ and $\hat{T} = 1$. Graphically it is evident that the parabolic salinity profile is the most stable. Inverted parabolic profile is unstable for $0 \le \hat{d} \le 0.65$ and linear profile is unstable for $0.65 \le \hat{d} \le 1$. At $\hat{d} = 0.65$ linear and inverted parabolic profiles have same effect on R_c .

Fig.2: The effect of $\hat{\mu}$ on critical Rayleigh number R_c for Linear, Parabolic and Inverted parabolic profiles with respect to the depth ratio $\hat{d} = \frac{d_m}{d}$.

Figure 2 shows the variation of critical Rayleigh number R_c for different profiles with respect to the depth ratio for fixed values of Da = 0.1, $\kappa = 1$, $\tau_1 = \tau_2 = 0.25$, $\tau_{pm1} = \tau_{pm2} = 0.75$, $R_{s1} = R_{s2} = 5$, $\hat{S}_1 = \hat{S}_2 = 1$, and $\hat{T} = 1$. The effects of the viscosity ratio $\hat{\mu} = \mu_m / \mu$ which is the ratio of the effective viscosity of the porous matrix to that of the fluid viscosity is displayed in the above graphs. For fixed values of depth ratio, the increase in the value of $\hat{\mu}$ increases the value of critical Rayleigh number R_c i.e., the system is stabilized. Thus the onset of triple diffusive convection is delayed.

Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

846

w.iieat

Exploring Innovation

For Salting below, Desalting above and Step function Salinity Profiles:

Fig.5: The variation of critical Rayleigh number R_c for Step function, Desalting above and Salting below profiles with respect to the saline depth \mathcal{E} .

Figure 5 shows the variation of critical Rayleigh number R_c for different profiles with respect to the saline depth \mathcal{E} for

fixed values of
$$Da = 0.1$$
, $\mu = 0.5$, $d = 1$, $\varepsilon_m = 1$, $\kappa = 1$, $S_1 = S_2 = 1$, $T = 1$, $R_{s1} = R_{s2} = 5$,
 $\tau_1 = \tau_2 = 0.25$, $\tau_{pm1} = \tau_{pm2} = 0.75$.

Graphically it is evident that the step function salinity profile is the unstable profile. Salting below salinity profile is the stable profile for the depth ratio $0 \le \hat{d} \le 0.45$ and Desalting Above salinity profile is

the stable profile for the depth ratio $0.45 \le \hat{d} \le 1$. At $\hat{d} = 0.45$ both salting below and desalting above profiles have same effect on R_c .

Fig.6: The effect of $\hat{\mu}$ on critical Rayleigh number R_c for Step function, Desalting above and Salting below profiles with respect to the saline depth \mathcal{E} .

Figure 6 shows the effects of the viscosity ratio	viscosity of the porous matrix to that of the fluid layer on
$\hat{\mu} = \frac{\mu_m}{\mu} = 1.5, 2, 2.5,$ which is the ratio of the effective	critical Rayleigh number R_c . For fixed value of
$Da = 0.1, \hat{d} = 1, \varepsilon_m = 1, \kappa = 1, \hat{S}_1 = \hat{S}_2 = 1, \hat{T} = 1,$	$R_{s1} = R_{s2} = 5, \ \tau_1 = \tau_2 = 0.25, \ \tau_{pm1} = \tau_{pm2} = 0.75.$
With the increase in the value of $\hat{\mu}$ increases the critical	μ_m is made larger than the fluid viscosity μ , the onset
thermal Rayleigh R_c which stabilizes the system, so the	of the convection in the fluid layer can be delayed.
onset of triple diffusive convection is delayed. In other	
words, when the effective viscosity of the porous medium	

847

destabilized for step function and desalting above profile and stabilized for Salting below profile.

Retrieval Number: F11590886S19/2019©BEIESP DOI:10.35940/ijeat.F1159.0886S19 Journal Website: <u>www.ijeat.org</u> Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

VI. CONCLUSION:

6.1. For Linear, Parabolic and Inverted Parabolic salinity Profile:

i) The curves of solute Rayleigh number of first solute R_{s1}

are diverging, indicating that, in porous layer dominant composite systems the convection is delayed by

increasing solute Rayleigh number $\frac{R_{s1}}{r}$

ii) The curves of diffusivity ratio $[\tau_1]$ are converging, indicating that, in porous layer dominant composite systems the convection can be made fast by increasing the concentration of first salt.

6.2. For Salting below, Desalting above and Step function Profile:

i) By increasing the parameters $\hat{\mu}$ and $\frac{R_{s1}}{R_{s1}}$ triple diffusive convection for the above profiles is delayed.

ii) By increasing the thermal diffusivity ratio $\frac{1}{1}$, the triple diffusive convection in the above profiles is quick.

REFERENCES

- 1. Chand. S, 2013. Triple-diffusive convection in a micropolar ferrofluid in the presence of rotation. Int. J. of Applied Mechanics and Engineering, 18, 307-327.
- Chen F and Chen C F, 1988. Onset of Finger Convection in a horizontal porous layer underlying a fluid layer, J. Heat transfer, 110, 403.
- 3. Currie I G, 1967. Isotropic composition and origin of the Red sea and Salton Sea geothermal brines, Science, 154, 1544.
- Griffiths R.W, 1979. The Influence of a third Diffusing Component upon the onset of Convection, J. Fluid Mech. vol. 92,659.
- Lopez A.R, Romero L.A and Pearlstein A.J, 1990. Effect of rigid boundaries on the onset of Convective Instability in a Triply Diffusive Fluid Layer. Physics of Fluids, 2, 897.
- Mukesh Kumar Awasthi, Vivek Kumar and Ravi Kumar Patel, 2018. Onset of triply diffusive convection in a Maxwell fluid saturated porous layer with internal heat source, Engineering Physics and Mathematics, 9, 1591-1600.
- Nield D A, 1977. Onset of convection in a fluid layer overlying a layer of a porous medium, J. Fluid Mech., 81,513.
- Pearlstein A.J, Harris R.M and Terrones, 1989. The onset of Convective Instability in a Triply Diffusive Fluid Layer, .J. Fluid Mech., 202, 443.
- Raghunatha K.R, Shivakumara I S and B. M. Shankar, 2018, Weakly nonlinear stability analysis of triple diffusive convection in a Maxwell fluid saturated porous layer, Applied Mathematics and Mechanics, 39, 153 - 168.
- Raghunatha K.R and Shivakumara I.S, 2018. Stability of triple diffusive convection in a viscoelastic fluid saturated porous layer. Applied Mathematics and Mechanics, 39, 1385-1410.
- Rana G C, Ramesh Chand, Veena Sharma and Abhilasha Sharda, 2016. On the onset of triple-diffusive convection in a layer of nanofluid, JCAMECH, 47, 67-77.
- 12. Rionero S, 2013a. Triple Diffusive Convection in Porous Media, Act Mech. 224, 447.
- Rionero S, 2013b. Multicomponent Diffusive Convective Fluid motions in Porous Layers ultimately boundedness, absence of subcritical Instability, and global nonlinear stability for any number of salts. Phys Fluids, 25, 1.
- Sameena Tarannum and S. Pranesh, 2017. Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid using Ginzburg-Landau Model, International Journal of Mechanical and Mechatronics Engineering, 11, 3.
- 15. Shivakumara I.S, Suma and Krishna B, 2006. Onset of surface tension driven convection in superposed layers of fluid and saturated porous medium, Arch. Mech., 58, 71-92.

Retrieval Number: F11590886S19/2019©BEIESP DOI:10.35940/ijeat.F1159.0886S19 Journal Website: <u>www.ijeat.org</u>

- Shivakumara I.S and Kumar S.B.N, 2013. Bifurcation in Triply Diffusive Couple Stress Fluid Systems. International Journal of Engineering Research and Applications, 3, 372.
- Shivakumara.I.S, Kumar S.B.N, 2014. Linear and Weakly Nonlinear Triple Diffusive Convection in a Couple Stress Fluid Layer, International Journal of Heat and Mass Transfer, 68, 542.
- Sparrow E M, Goldstein R J and Jonsson V K, 1964. Thermal instability in a horizontal fluid Lauer: Effect of boundary conditions and nonlinear temperature profile, J. Fluid Mechanics, 18, 513.
- Turner J.S, 1985. Multicomponent Convection, Ann. Rev. Fluid Mech. 17, 11-44p.
- Venkatachalappa M, Prasad, Shivakumara I.S and Sumithra R, 1997. Hydrothermal growth due to double diffusive convection in composite materials, Proceedings of 14th National Heat and Mass Transfer Conference and 3rd ISHMT ASME Joint Heat and Mass transfer conference, 29-31.
- 21. Vidal A and Acrivos A, 1966. Nature of the neutral state in surface tension driven convection, Phys. Fluids, 9, 615.
- Zhao M, Wang S and Zhang Q, 2013. Onset of Triply Diffusive Convection in a Maxwell Fluid Saturated Porous Layer. Applied Mathematical Modelling. 38, 23-52.

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

