Experimental Research of Silane Treatment on Bamboo and Aramid Hybrid Composites

T. Naresh Kumar, D. Logendran, P. Karthick, A Arun Raja, A. Abraham Eben Andrews

Abstract: The first and most significant target was to make composite exploiting aramid grit alongside common grit by surface change and acquire combination that has aggressive possessions by diminishing its aramid content as it is costly and its utilization causes carcinogenic though characteristic strands are eco-accommodating just as copiously accessible and its least expensive as well.

Keywords: Bio-degradable, Nano-Bio Interface, Bio compounds.

I. INTRODUCTION

Bio compounds are compound materials, that is, materials shaped by a network (tar) and a support of common strands (normally got from plants or cellulose) [1-3]. Bio compounds are the blend of regular strands (bio grits, for example, wood filaments (hardwood and softwood) or non - wood strands with polymer frameworks from both of the inexhaustible and nonrenewable assets [4-6].

Bio compounds regularly impersonate the structures of the living materials associated with the procedure, notwithstanding the reinforcing properties of the framework that was utilized, yet at the same time giving biocompatibility, for example in making frameworks in bone tissue building [7-10]. The level of biodegradability in bio - put together polymers depends with respect to their structure and their administration condition [11-13].

Compounds are those materials that contain at least two unmistakable constituent stages, on a scale bigger than the nuclear [14-17]. The term 'Bio compounds' alludes to those compounds that can be utilized in bioengineering. The constituents of the compound hold their personalities in the compound [18-21]. Specifically, they don't break down or generally consolidate totally into one another in spite of the fact that they demonstration in show. In compounds, properties, for example, the versatile modulus can be altogether not quite the same as those of the constituents alone, yet are extensively adjusted by the constituent structures and substance [22-25].

From a basic perspective, compounds are anisotropic in nature. Further, investigation into organic inorganic interfaces centers around the plan, blend, and portrayal of novel amalgams that circuit natural and inorganic materials [26-29]. The combination of "delicate" natural and natural atomic congregations with "hard" inorganic nano-structures is of uncommon intrigue as a result of the chance to join typically dissimilar substance and physical properties inside a solitary framework [30-33].

Soluble base treated alongside Silane preserved and unprocessed filaments crossover compound was readied and every one of the kinds of physical and concoction properties examined [44-50]. Compound change utilizing Silane as a coupling operator shows better improvement in properties of both Bamboo/Aramid Hybrid compound just as in Aramid Compound moreover. All the Silane treated compound demonstrated preferred execution over untreated compound [34].

Execution properties of compound having different application in substantial and non material. Silane has an additional bit of leeway both physical and synthetic properties improvement.Diverse grit adjustment procedures can be exploited to recover its mechanical just as synthetic possessions [35]. Different regular strands which are bio degradable and plentifully accessible can be make use of as fortification material with man made filaments with diverse breeds of thermoset and thermoplastic saps [51-54]. Composite framed can be used for basic applications, for making guard of vehicles and internal framing of vehicles and dashboards [36-38].

Revised Manuscript Received on August 30, 2019

T. Naresh Kumar, Department of Mechanical Engineering, Malla Reddy Engineering College (Autonomous), Hyderabad, Telangana 500100 India.

D. Logendran, Department of Engineering, Faculty of Engineering Science and Technology, The Maldives National University, Radhhebai Higun,Machangolhi,Male-20371,Maldives.

P. Karthick, Department of Mechanical Engineering, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu 603103, India.

A Arun Raja, Department of Mechanical Engineering, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu 603103, India.

A. Abraham Eben Andrews, Department of Mechanical Engineering, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu 603103, India.
II. EXPERIMENTAL METHODS

Chopped bamboo and aramid fibre is treated with distilled water for 24 hrs to remove surface impurities.

NaoH Treatment
Treated with 5% NaOH (on weight of fibre) at a temperature 50°C for 1 hour.
Washed multiple times to remove remaining sodium hydroxide. After washing, treated fibres were neutralized with acetic acid to get a final pH of 7 and dried at temperature 80°C for 6 hours.

Silane Treatment
This NaOH treated bamboo and aramid fibres were subsequently treated with 5% (on weight of fibre) 3 amino propyl triethoxy silane which was made in ethanol water mixture in the ratio of 80:20. This was followed by curing at 110°C in hot air oven for 60 minutes.

Fig 1 Surface modification of Bamboo and Aramid Fibre [39-41]

Fig 2 Mould and compound specimen preparation[42-44]

The mould was left for 1 hour at temperature of 120°C for curing of composite in Compression moulding machine.

The required amount of Epoxy (Lapox L 12) resin and 10% hardener (K 6) mixture taken and poured uniformly on fibres manually.

Fig 3 Silane Preserved of Bamboo&Aramid hybrid Compounds.
III. RESULT AND DISCUSSION

Fig 3 Effect of Silane Treatment on Tensile Strength of Bamboo: Aramid hybrid Compounds.

Fig 4 Effect of Silane Treatment on Tensile modulus of Bamboo: Aramid hybrid Compounds.

Fig 4 Silane Un Preserved of Bamboo&Aramid hybrid Compounds.
Experimental Research of Silane Treatment on Bamboo and Aramid Hybrid Composites

Fig 5 Effect of Silane Treatment on Flexural Strength of Bamboo: Aramid hybrid Compounds

Fig 6 Effect of Silane Treatment on Izod Impact Strength of Bamboo: Aramid hybrid Compounds

Fig 7 Effect of Silane Treatment on Hardness of Treated and Untreated Bamboo: Aramid hybrid Compounds
IV. CONCLUSION

Biocompounds offer open doors for ecological increases, diminished vitality utilization, protection and sound retention properties. These days, Use of Biocompounds in structure ingredients offers a few points of interest, for example, shabby, lightweight, natural neighborly, bio - inexhaustible, and increasingly solid. In any case, they have a few weaknesses also, for example, dampness ingestion and photochemical corruption in view of the UV contaminations. Moreover, biocompounds offer open doors for natural additions, decreased vitality utilization, protection and sound ingestion possessions biocompounds, their focal points, restrictions, their worldwide generation, and their monetary. Moreover, this paper displayed at this juncture is extremely valuable accumulation of the cutting edge papers comprises a precious springboard to making biocompound advancements of tomorrow.

REFERENCES

ISSN: 2249–8958, Volume-8, Issue-6, August 2019

AUTHORS PROFILE

Mr. T. Naresh Kumar. Assistant professor in Mechanical Engineering Department, Malia Reddy Engineering College(Autonomous), Maisammaguda, Hyderabad. He has 5.6 years of teaching experience. He completed M.Tech in 2013 at MITS, Madanapalle, Jawaharlal Nehru Technological University, Anantapur. He had guided 3 M.Tech projects and published 13 papers in various National and International Journals and Conferences.

D. Logendran perused M.E. degree in Mechanical Engineering with a specialization of Engineering Design from Bannari Amman Institute of Technology, Sathyamangalam. Having 13 years of teaching experience. Presently working as Lecturer in Department of Engineering, Faculty of Engineering Science and Technology, The Maldives National University, Raddhebail Hugon, Machangolhi, Male-20371, Maldives

P. Karthick. Assistant Professor working in Mechanical Engineering Department at Hindustan Institute of Technology and Science, Chennai. Having 4 years of Teaching Experience and a year of Industrial Experience.

A Arun Raja. Assistant Professor working in Mechanical Engineering Department at Hindustan Institute of Technology and Science, Chennai. Having 4 years of Teaching Experience and a year of Industrial Experience. I had conducts research in the broad area of Material Science and Metal Castings.
A. Abraham Eben Andrews, Assistant Professor working in Mechanical Engineering Department at Hindustan Institute of Technology and Science, Chennai. Having 4 years of Teaching Experience and a year of Industrial Experience, I had conducts research in the broad area of Material Science and Metal Castings. Reviewer of two International peer Reviewed Journals in Materials. Executive member of YP CLN team in The Institution of Engineering and Technology.