
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

3152

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F9257088619/2019©BEIESP
DOI: 10.35940/ijeat.F9257.088619
Journal Website: www.ijeat.org

Abstract: The software defect prediction and assessment plays a

significant role in the software development process. Predicting
software defects in the earlier stages will increases the software
quality, reliability and efficiency, the cost of detecting and
eliminating software defects have been the most expensive task
during both development and maintenance process, as software
demands increase and delivery of the software span decreased,
ensuring software quality becomes a challenge. However, due to
inadequate testing, no software can pretend to be free from errors.
Bug repositories are used for storing and managing bugs in
software projects. A bug in the repositories is recorded as a bug
report. When a bug is found by a tester its available information is
entered in defect tracking systems. During its resolution process a
bug enters into various bug states. These defect tracking systems
enable user to give the information about the bugs while running
the software. However, the severity prediction has recently gained
a lot of attention in software maintenance. Bugs with greater
severity should be resolved before bugs with lower severity. In this
paper an evolutionary interactive scheme to evaluate bug reports
and assess the severity is proposed. This paper presents a Software
Bug Complexity Cluster (SBCC) using Self Organizing Maps. In
this SBCC a feature matrix is built using bug durations and the
complexities of software bugs are categorized into distinct clusters
including Blocker, Critical, Major, Trivial and Minor by
specifying negative impact of the defect using two different
techniques, namely k-means and SOM. Bug duration, proximity
error and pre-defined distance functions are used to estimate the
accuracy of different bug complexities. Our systematic study
found that SOM's proximity error and fitness have greater
performance and efficiency than K-Means. The collected results
showed better performance for the SBCC with respect to fitness
and cluster proximity error.

Keywords: SBCC,SOM,Severity,K-Means,Complexit,Prediction.

I. INTRODUCTION

Software influences a wide variety of human operations
and their use is growing enormously. Due to increased
demand for reduced delivery time, it is becoming critical to
maintain quality though reducing delivery time. That's why;
different testing techniques are used to ensure software
quality [1]. Nevertheless, the possibility of latent bug

Revised Manuscript Received on October 30, 2019.

* Correspondence Author
 M Chalapathi Rao*, Research Scholar, Rayalaseema University,

Kurnool, India.
Dr.P Suryanarayana Babu, Department of computer science,

Rayalaseema University, Kurnool, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

presence throughout the software could not be discarded
despite robust testing.

Predicting software defects is an important task in the
software life cycle. During software testing, the unexpected
behavior is identified and manifest as a defect It can be found
during either testing or in use of the product. The exploitable
bugs identified once the enlistment of the software effect the
software's accuracy and quality. Bug tracking (BTS) systems
enable these software bugs to be reported by both users and
developers. It can enable more bugs to be identified and
solved and thus improve the overall quality of the software
produced [2][3].

Triager analyzes the reported bugs in the Bug Tracking
System to compute their correctness, importance, validity,
severity and also to validate their duplicity, these bugs are
assigned to software developer to find out the solution.
Triager is the individual who uses his experience and
knowledge to analyze and refine the reported bugs. The
training process of bugs starts with Review of Bug Report to
evaluate the bug after review and the developer is assigned the
bug based on its severity, such as bug severity, priority etc.

In the literature [4][5][6], the authors proposed a bug
tracking system. These systems contain a more number of
bugs. So, developers must make a choice to solve among all
reported bugs. The bug severity is characterized as the
software functionality effect of the bug [7]. But, for a huge
number of bug reports, assigning severity manually is a really
complex job and time consuming. Also, the accuracy of the
identification relies on the experience and knowledge of the
triager to analyze the bug. As a result, the need to simplify the
entire application bug incidence estimation complexity
method has increased to create bug triage far more proficient
and time consumption is less. Therefore the method of
grouping bugs based on severity needs to be automated.Many
researchers used machine learning algorithms in earlier
studies to optimize the bug triage process [8] and identify
deception in reported bugs [9]. But so far, it is still far from
reliable accuracy and room for improvement is still there.
Therefore, this paper attempts to cluster software bugs based
on their severity with increased accuracy.

The main objective of the research paper is to device an
evolutionary interactive approach called Software Bug
Complexity Cluster (SBCC) clustering algorithm to assess
and predict complexity of software defects into different
clusters or groups.

Assessment of Software Bug Complexity and
Severity using Evolutionary SOM Scheme

M Chalapathi Rao, P Suryanarayana Babu

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.F9257.088619&domain=www.ijeat.org

Assessment of Software Bug Complexity and Severity using Evolutionary SOM Scheme

3153

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F9257088619/2019©BEIESP
DOI: 10.35940/ijeat.F9257.088619
Journal Website: www.ijeat.org

The proposed process is constructed by adapting the Self
Organization Maps (SOM) clustering techniques to retrieve
useful information after the pertaining to different clusters
and enable them to group from different

data perspectives including Blocker, Critical, major, trivial
and minor by specifying severity using two different methods,
namely- k-means and SOM. The Software Bug Complexity
Clustering algorithm efficiently assesses the severity of
software bugs. This algorithm also constructs a feature matrix
using defect cost duration. A systematic research on SBCC is
carried out using SOM to evaluate the complexity of software
bugs used efficiently at a high accuracy rate. Furthermore, a
comparison of cluster fitness and cluster proximity error
measures are utilized to compare

 the existing standard K-means algorithm and proposed

model.
The research the paper structured as follows: Section

2describes the basic preliminaries and related literature work
associated with software defect detection. In section 3 the step
wise description of the proposed approach is elicited. Dataset
description, evaluation methodology and complete analysis
are explained in section 4 and section 5gives about conclusion
and future scope of the work.

II. BASIC PRELIMINARIES AND ASSOCIATED

WORK

Most of the existing software defect prediction studies in
the literature are limited in carrying out relative empirical
analysis of all learning methods. Some of them have used few
methods and provide an association among them and others
just discussed or proposed a method by extending them based
on accessible learning techniques [10].

Software Bug severity prediction will helps to decide the
next action to do with reported bugs. During severity
prediction in BTS, it is a complex and time consuming task to
assess the severity of software bugs due to large number of
bug reports. Since its identification, many researchers have
been trying to automate the bug severity prediction process.

The bug severity prediction using BTS first was proposed
using supervised machine learning techniques [11]. The
system is designed to predict the developer to who bug ought
to be allocated. Unsupervised classification like SVM
(Support Vector Machine), C4.5, and Naïve Bayes and other
machine learning algorithms extended and developed a
recommender system for bug reporting [12]. A new method
for estimation of software bug is presented using bug duration
[13] [14]. A new bug discovering method has adopted which
is based on bug fix memories: a program-specific bug is
developed by the bug fix history analysis will be described in
[15].

A new automated software bug severity prediction method
called SEVERIS was proposed by [16] to give a level of
severity to bug reports. Using text mining algorithms, Eclipse,
Mozilla bug reports were pre-processed and naïve Bayes
classifier was used. Different machine learning approaches
namely K-nearest neighbour, J48, RIPER, Support Vector
Machine, and Naïve Bayes, have been applied to IV & V bug
reports of NASA [17]

This present research will discusses K-means and Self
Organizing Maps (SOM). The k-means technique is feasible
for implementation, recognized as the best used technique for

partitioned clustering. The technique's execution time is
highly effective. The parameter k is regarded as the input in
order to maintain maximum similarity with the intra cluster, as
well as minimal similarity with the inter cluster. The k clusters
therefore into a separate group of n data objects. The mean
particle value in a cluster is measured by cluster similarity,
also known as the cluster center or gravity center.

 In many applications the SOM (Self-Organizing Map) has
proved useful among the most prevalent neural network
designs [17]. It forms part of the category of dynamic learning
networks. Use the SOM to cluster data without knowing input
data class memberships. Also termed the SOM was SOFM,
the Self-Organizing Feature Map, and can be used to identify
characteristics intrinsic in the problem. SOM give a topology
that preserves mapping from high-dimensional space to map
units. Map units or neurons typically form a 2-D lattice and
thus modeling is a navigation of high-dimensional space on a
plane.

 In this a paper, an evolutionary interactive approach is
proposed to analyze the bug reports and assesses the severity.
This paper presents a SBCC – Software Bug Complexity
Cluster using Self Organizing Maps (SOM) approach. In this
SBCC a feature matrix is constructed using bug durations and
software bug complexities are grouped into different clusters
including Blocker, Critical, major, trivial and minor by
specifying severity using two different methods, namely-
k-means and SOM. The accuracy of different bug
complexities are estimated using bug duration, proximity
error and different distance functions. Our systematic study
has ascertained that the proximity error and fitness on SOM
has better accuracy and performance compared to K-Means.

III. SBCC: SOFTWARE BUG COMPLEXITY

CLUSTERING USING SOM

The entire process of severity prediction proposed in this
paper can be summarized into 3 major initiations. In the first
step, a detailed data acquisition is presented. In the second
step, feature matrix construction is detailed. In the third step
we will propose an integrated approach for estimating
software bug complexity.

3.1. Dataset Description

 The goal of this research is Eclipse and Mozilla as it has a
broad field of development and Eclipse is a large and mature
OSS project. The experiment considers Eclipse bug reporting
cases to conduct severity-based bug classification. Eclipse
bug reports are expected to be of excellent quality [18] as
Eclipse developers are themselves and use technical terms to
report bugs. This will assist and generate a more precise
dictionary of terms, including enhancement, critical, blocker,
normal, minor, major, and trivial, for specifying the amount of
bug severity in this study.Normal bug tracker involves manual
examination to evaluate the severity of such bug reports and
to categorize bug reports into serious or non-serious
categories. [6].

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

3154

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F9257088619/2019©BEIESP
DOI: 10.35940/ijeat.F9257.088619
Journal Website: www.ijeat.org

Consequently, the The level of severity of critical, blocker
and major is viewed to be serious, while the level of severity
of minor and trivial is not considered serious.

The Eclipse data set contains four components UI, SWT,
Debug, and Core. This study perceives core instances of bug
reporting. Table 1 shows the data sets deemed in this work.

TABLE 1: Bug report instances of components of Eclipse
Component Severe Bug Report

Core 1514
Debug 1514
SWT 1618

UI 1764

1487
1400
1393
1432

Non Severe Bug Report

Eclipse's UI component represents the IDE interface and

the debug component relating to every the program's
debugging activities. Eclipse's SWT component is
abbreviated as a standard widget tool for all widgets used in
Eclipse software development,

 and Eclipse's core component is the main IDE

infrastructure that includes compiler, API model, code
selection and evaluation support, etc. The generalized model
for classifying reports of these can be used to classify reports
of any other Eclipse.

3.2. Feature Matrix Construction by Estimating Bug

Duration
In a defect tracking system the term life cycle of a bug

refers to the various stages it begins when a defect is found
and terminates when a defect is closed. The bug has different
states in the life cycle. When the bug is first posted, it's going
to be NEW. This means that the bug has not yet been
approved. If the submitter is trusted, the bug will originally be
categorized as new. The triagers verify the presence,
non-duplicity and validity of bugs and move them from
Unconfirmed to new. Once the lead changes by previous state,
assign the bug to developer and transferred to assign once a
bug has been assigned to the right product, severity and
priority.

The entire duration of the bug fix can be calculated by
extracting the key features of the bug report from the
attributes like bug created and modified dates. If the status of
the bug is resolved then the bug fix duration is the difference
between bug modified and created dates.This difference can
be moved into hours, days, weeks, months etc To enable
dataminig methods and algorithms to be used that require an
emblematic target class, we discrete the time to resolve values
using an algorithm to bind the same density. Each bin size is
produced by the discrete method relatively corresponds to the
segmentation that could obviously be used for scheduling
process [20].

3.3. SBCC: Software Bug Complexity cluster
The extracted features data set shows each bug’s current

status.Because we want to predict bugs ' lifetime at stipulated
time, we need to roll back to the “New” status. Rollback is
accomplished incrementally by implementing the bug’s

unfold history in reverse order until reaching a specific state.

3.3.1. Estimating software bug complexity using K-means

 The k-means technique, acknowledged as the best
employed technique for partitioned clustering is feasible for
implementation. The execution time of the technique is very
effective. The parameter k is considered as the input so as to
maintain maximum similarity with intra cluster, likewise
minimum similarity with inter cluster [21]. Consequently, the
k clusters to a separate group of n data objects. The mean
value of the particles in a cluster is measured by similarity in
cluster, which is also known as the center of cluster or center
of gravity. The selection of data particle in k random is made
at the outset. Each of the particles represents a mean value of
cluster or center. Subsequently, considering the like
similarity distance between the mean of the cluster and
particle, the remaining particles accordingly, is allocated to
the clusters. The new value of mean is then calculated by each
cluster. The procedure persists until the accomplishment of
convergence criterion.

Pseudo code of K-Means algorithm
• Centroid vectors of cluster are inherited from the

datasets.
• Each data particle is assigned to the nearby cluster

centroids.
• Using above equation cluster centroid vector cj is

recalculated.
• Until a convergence criterion is attained, second and

third steps are repeated.

3.3.2. Estimating software bug complexity using
Self-Organizing Map (SOM)

Self organizing map was created and evolved by Prof.

Kohonen. In many applications the SOM has proven to be one
of the most common neural network models. It forms part of
the category of competitive learning networks. Based on
unsupervised learning, which implies that during the learning
phase there is no need for human intervention little need to be
known about the features of input information.

 SOM can be used to cluster data without prior knowledge
about class membership The self organization map is also
called as Self-Organizing Feature Map (SOFM), which is
used to identify the intrinsic characteristics of the problem.
Provide a topology for high-dimensional mapping of space to
map units. In general, map units or neurons form a 2-D lattice,
so mapping on a plane is a high dimensional space

Preserving the topology property implies maintaining the
relative distance between the points in the mapping. Points in
the input space close to each other are mapped in the SOM to
neigh boring map units. Consequently, the SOM can be used
in the cluster as a high-dimensional data analysis tool. In
addition, the ability can be generalized by the SOM.
Generalization means that incoming inputs can be recognized
and characterized by the network. The map unit to which it is
mapped is assimilated with a new input data.

A SOM’s primary objective is to transform an incoming

arbitrary dimension signal pattern into a discrete one or 2-D
map and to accomplish this conversion in topological ordered
manner. During competitive learning, the neurons will be
selectively tuned to different input pattern or classes of input
patterns. The locations of the tuned neurons are ordered and a
important coordinate system for the input characteristics is
produced on the lattice.

Assessment of Software Bug Complexity and Severity using Evolutionary SOM Scheme

3155

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F9257088619/2019©BEIESP
DOI: 10.35940/ijeat.F9257.088619
Journal Website: www.ijeat.org

 The SOM therefore forms the topographic map of the
necessary input pattern.

Pseudo code of SOM Algorithm

1. Each node weights are initialized.
2. From the training data set, a vector is selected
randomly.
3. To calculate which weights are most like the input
vector, each node is examined. The winning node is
generally referred to as the BMU (Best Matching
Unit).
4. Then it calculates the BMU's neighborhood. Over
time, the number of neighbors decreases.
5. By becoming more like the sample vector, the
winning weight is rewarded. Also the neighbors
become more like the vector of the sample. The
closer a node is to the BMU, the less it learns, the
more its weights are altered and the further the
neighbor is from the BMU.
6. For N iterations, repeat step 2.

IV. EXPERIMENTAL ANALYSIS

In this section, using SOM with K-Means algorithm, we
will review the efficiency of our proposed SBCC scheme. The
efficiency of the proposed scheme is assessed on the basis of
distinct measure of assessment as shown below. In this study,
the datasets are used to evaluate five datasets, namely DS1,
DS2, DS3, ECLIPSE and MOZILLA. The proposed
paradigm of RFCM clustering marks the data in seven
distinct classes with class labels; blocker, critical,
enhancement, major, minor, normal, and trivial. For testing
our model and this dataset, we chose Eclipse JDT Core18.
This dataset is intended to perform class-level bug prediction.
This strategy can be expanded straightforwardly to file,
package, project, and other levels.

A. Evaluation Measures
The SBCC technique is selected by using the predefined

distance measures, fitness and Proximity error to sense the
selected metric.

1. Similarity Measures
The similarity measures which are used with

relevance feedback are as follows:

• Euclidean Distance : The two data objects are p =
(p1,p2,p3,...,pn) and q = (q1,q2,q3,...,qn) are plotted in
n-dimensional Euclidean space, thus the distance between
p->q or from q->p of a complete data set D can be
represented as:

• Cosine Distance: In order to measure the similarity as an
alternative to dissimilarity, this specific distance is used. In
fact, this distance is enclosed by 0 and 1. The cosine distance
which is often employed to measure clustered data is thus
depicted by:

 The two data vectors here used are xi and yi, wherein
xi.yi represents the dot product and |xi| and |yi| corresponds to
the data vector of length X.

• Chi-Square Distance: The chi-square distance d
between objects x and y in an m-dimensional object space is
represented as

Here sum of tuple values as sumi for attribute i taking place
in the training dataset, and sizex is the sum of all values in the
object x.

• Camberra Distance: The Camberra distance d between
objects x and y in an m-dimensional object space is given by:

Where y = (y1,y2,y3,.., ym) and x = (x1,x2,x3,..., xm) are two
points in Camberra dimensional space of m.

• City Block Distance: The well-known distance city

block also called a Manhattan similarity measure may be
perceived as

1. Accuracy
 Accuracy should be measured by taking into

consideration the true positives and true negatives.
2. Fitness

The average distance between a cluster centroid and the
objects in the dataset. The clustering technique uses this value
to elucidate the data sets is represented as:

3. Proximity error based on number of clusters
 The probability of occurrence of error in the specified

dataset or algorithm is calculated by this, which would
attempt to remove that specified dataset having maximum
errors as well as evade error prone algorithms. The data items
were randomly opted from the dataset for each particle C and
are used as prototypes to calculate a partition matrix for each
particle, as per:

 Subsequently, the centroid associated with the each

partition matrix is computed and in turn are utilized as the
initial population of particle. This calculates the probability of
occurrence of proximity error in that particular dataset or
technique

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

3156

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F9257088619/2019©BEIESP
DOI: 10.35940/ijeat.F9257.088619
Journal Website: www.ijeat.org

B. Severity Prediction using cluster fitness on of Different
Datasets Based on K-Means Technique and SOM

The table 2 demonstrates that for all datasets, SOM is

offering low fitness value, as it is un-depended on outdated
information. From Table 2, it is emphasized that for entire
datasets, SOM divulges the minimum fitness value within a
short duration. A significant performance improvement is
observed by varying inertia in SOM.

TABLE 2: Severity Prediction using cluster fitness on of

Different Datasets Based on K-Means Technique and
SOM

Datasets K-means SOM

DS1 26.54 34.52

DS2 59.5 89.5

DS3 66.3 86.3

Mozilla 29.35 45.21

Eclipse 19.55 34.86

Average 43.42 54.906

C. Severity Prediction Using Cluster Proximity Error on

Different Datasets Using K-Means and SOM

The Table 3 demonstrates that for Mozilla and Eclipse
datasets, SOM is offering better Proximity Error compared to
K-Means algorithm when k=3, k=5 and k=7. From Table 3, it
is emphasized that for DS1, DS2, and DS3 datasets, SOM
divulges the nearer fitness value within a short duration.

TABLE 3: Severity Prediction Using Cluster Proximity
Error on Different Datasets Using K-Means and SOM

Datasets
Number of

Clusters
Traditional
K-Means

SOM

k=3 74.52 84.7

k=5 75.52 84.7

k=7 58.8 86.4

k=3 78.3 90.1

k=5 71.27 76.2

k=7 65.07 76.2

k=3 30.25 24.3

k=5 23.87 23.9

k=7 21 19

k=3 24.99 31.5

k=5 29.03 24.3

k=7 25.92 16.1

k=3 22.92 25.5

k=5 16.18 56.1

k=7 7.12 39.1

Mozilla

Eclipse

DS1

DS2

DS3

Fig 1: Severity Prediction Using Cluster Proximity Error

on Different Datasets Using K-Means and SOM

From the Figure 1, it is observed that for Mozilla and
Eclipse datasets, SOM is offering enhanced Proximity Error
compared to K-Means algorithm with different k values.
From Figure 1, it can be concluded that SOM particles are
compactly grouped and it does improve clustering, in
comparison to K-Means algorithm.

D. Performance Evaluation of different Datasets

using K-means Technique
An assortment of similarity measures like Euclidean

distance, Cosine distance, Chi-square Distance, Camberra
Distance, and city block distance are analyzed for the number
of clusters from different dataset, with respect to a particular
seed point.

TABLE 4: Accuracy of the Eclipse’s Core dataset for

different distance measures with respect to K-Means
technique with varying k

k

Euclidean
Distance

Cosine
Distance

Chi-square
Distance

Camberra
Distance

City Block
Distance

3 33.33 33.33 66.67 33.33 66.67

5 66.67 33.33 66.67 33.33 66.67

7 66.67 66.67 66.67 33.33 66.67

Fig 2: Accuracy of the Eclipse’s Core dataset for

different distance measures with respect to K-Means
technique with varying k.

Table 4 and Figure 2, it is observed that for Eclipse’s Core

dataset, the accuracy is better for Euclidean distance,
Chi-square Distance and City Block Distance because of less
number of classes in the dataset.

Assessment of Software Bug Complexity and Severity using Evolutionary SOM Scheme

3157

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F9257088619/2019©BEIESP
DOI: 10.35940/ijeat.F9257.088619
Journal Website: www.ijeat.org

Table 5: Accuracy of the Eclipse’s Core dataset on SOM

Technique for different distance measures with respect to
k value.

k

Euclidean
Distance

Cosine
Distance

Chi-square
Distance

Camberra
Distance

City Block
Distance

3 33.33 66.67 33.33 66.67 33.33

5 33.33 66.67 33.33 66.67 33.33

7 33.33 66.67 33.33 66.67 33.33

From Table 5 and Figure 3, it is noticed that the Eclipse’s

Core dataset the accuracy is better for Cosine Distance and
Camberra distance. With Eclipse’s Core dataset k-Means is
not suitable because the number of clusters increases but their
no change in accuracy.

Fig 3: Comparison of accuracy of Eclipse’s Core data set

with different similarity measures using SOM technique

Figure 4 and Figure 5 represents SBCC Visualization on
Eclipse Core Dataset using K-Means and SOM techniques.

Fig 4: SBCC using K-means visualization on Eclipse Core
dataset

Fig 5: SBCC using SOM Visualization on Eclipse Core

dataset

Figure 6 and Figure 7 represents cluster assignments of
SBCC using K-means and SOM techniques on Eclipse Core
Dataset.

Fig 6: Cluster assignments using k-means on Eclipse core

dataset

Fig 7: Cluster assignments using SOM on Eclipse Core

dataset

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

3158

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F9257088619/2019©BEIESP
DOI: 10.35940/ijeat.F9257.088619
Journal Website: www.ijeat.org

From Figure 6 and Figure 7, it is observed that Software
Bug complexity is strongly assessed using SOM compared to
K-means. In Figure 7, in minor, major and critical we can
notice more cluster assignments compared to K-means
technique. It is due to that SOM is 85% gain in its cluster
fitness, enhancement in Proximity error and different
similarity measures. Hence it can be concluded from the
results that SBCC using SOM performs better for estimating
software bug complexity under the given experimental setup.

V. CONCLUSION

 Assessing the severity of the software defects in
software development and maintenance process is a critical
task and which will affect the overall success of software
product. Severity prediction requires historical data for
finding out critical bugs. In this a paper, an evolutionary
interactive SBCC – Software Bug Complexity Cluster using
Self Organizing Maps (SOM) approach is presented to
analyze the bug reports and assesses the severity. In this
SBCC, the software bug complexity or severity is predicted
using bug durations by clustering them into different clusters
including Blocker, Critical, major, trivial and minor.

The SBCC performance is evaluated by different similarity
measures namely Euclidean distance, Cosine distance,
Chi-square Distance, Camberra Distance, and city block
distance along with fitness and proximity error by specifying
severity using two different methods, namely- k-means and
SOM. Our systematic study has carried out on different
datasets, the evaluation process is implemented. From the
experimental study it is ascertained that the software bug
severity is assed nearly 85% using SOM compared to
K-means using proximity error and fitness. We can involve
other Machine Learning techniques as a future work and
provide an extensive comparison among them. Furthermore
this research work can be extended for online databases for
real time severity prediction of software bug complexities and
other software metrics are considered to assess the complexity
of a future software bug.

ACKNOWLEDGMENT

The first author is thankful to Rayalaseema University,
Kurnool and CMR Technical Campus, Hyderabad for
providing extensive support for carrying this research work.

REFERENCES
1. Beizer, et al, “Software testing techniques”. Dreamtech Press, 2003.
2. Raymond, Eric.The cathedral and the bazaar. Knowledge, Technology

& Policy 12; 1999. no. 23-49.
3. “15 Most Popular Bug Tracking Software to Ease Your Defect

Management Process”,

http://www.softwaretestinghelp.com/popular-bugtracking- software/”,

Feb 12, 2015.
4. Tian, Yuan, et al. “Predicting priority of reported bugs by multi-factor

analysis” , In Software Maintenance(ICSM), 2013 29th IEEE
International Conference on. IEEE ;2013 , pp. 200-209.

5. Ahsan, Syed , et al, “Automatic software bug triage system (bts) based
on latent semantic indexing and support vector machine”, In Software
Engineering Advances, 2009. ICSEA'09. Fourth International
Conference on, . IEEE; 2009.pp. 216-221.

6. Lamkanfi, , et al, “ Predicting the severity of a reported bug. in Mining
Software Repositories (MSR)”, 2010 7th IEEE Working Conference
on, pp. IEEE; 2010. pp.1-10.

7. “Defect severity classification in software testing (with an example)”,

http://www.zyxware.com/articles/3559/defect-severity-classification-i
nsoftware-testing-with-an-example, May 24, 2013.

8. Alenezi, , et al, “Efficient bug triaging using text mining. Journal of
Software “8;2003. no. 9.

9. Runeson, , et al, “Detection of duplicate defect reports using natural
language processing”, In Software Engineering, 2007. ICSE 2007.
29th International Conference on., IEEE ; 2007.pp. 499-510.

10. S. Adiu , et al , “Classification of defects in software using decision tree

algorithm”, International Journal of Engineering Science and

Technology (IJEST), Vol. 5, Issue 6, pp. 1332-1340. 12.
11. Murphy, Gail C., and D. Cubranic. Automatic bug triage using text

categorization. In Proceedings of the Sixteenth International
Conference on Software Engineering & Knowledge Engineering;
2004.

12. Anvik, et al, Who should fix this bug?. InProceedings of the 28th
international conference on Software engineering,. ACM ;2006. pp.
361-370 .

13. Cathrin et al, 2007, “How Long will it Take to Fix This Bug? Intl. conf.
on software engineering”, IEEE Computer Society Wanshington, DC,
USA, pp. 1-8.

14. Cathrin et al, “Predicting Effort to Fix Software Bugs”, Proceedings of
the 9th Workshop Software Reengineering,2007.

15. Sunghun Kim, Kai Pan, E. James Whitehead, Jr., 2006, Memories of
Bug Fixes, SIGSOFT'06/FSE-14, November 5–11, Portland, Oregon,
USA.

16. Menzies, et al, “Automated severity assessment of software defect
reports in Software Maintenance”, 2008. ICSM 2008. IEEE
International Conference on, IEEE; 2008.pp. 346-355.

17. Chaturvedi, et al, “ Determining bug severity using machine learning
techniques”, In Software Engineering (CONSEG), 2012 CSI Sixth
International Conference on, IEEE; 2012, pp. 1-6.

18. Bettenburg et al.”What makes a good bug report”. In Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering, ACM ; 2008 pp. 308-318.

19. Bugzilla Documentation – Life Cycle of a Bug. Available online
20. at http://www.bugzilla.org/docs/tip/html/lifecycle.html.
21. K.Prasanna, et al “CApriori: Conviction based Apriori Algorithm for

Discovering Frequent Determinant Patterns from High Dimensional
Datasets”, published in the proceedings of IEEE International
Conference on Science , Engineering and Management, IEEE
ICSEMR 2014, Nov 27-29, 2014 with ISBN: 978-1-4799-7613-3

22. K.Prasanna et al, “A Novel Benchmark K-Means Clustering on
Continuous data “, published in the proceeding of International
Journal of Computer Science and Engineering, Vol. 3 No. 8 with ISSN:
0975-3397, 2011.

