
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

4470

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8989088619/2019©BEIESP
DOI: 10.35940/ijeat.F8989.088619
Journal Website: www.ijeat.org


Abstract: Majority of the organization uses cloud for storage

purpose in order to reduce the cost as well as maintenance. Due to
increasing threat from internal and external sources, there would
be possibility of corruption in the cloud storage files. Thus the
storage must to be monitored periodically for integrity checking.
Since most of the Data Owners have limited resources thus the
responsibility of integrity checking goes to the Third Party
Auditors (TPA). Usually the static way of deciding to use
particular hash tree methodology to store the cloud storage
meta-data, which is mainly used for integrity checking throughout
is inappropriate for two main reasons, firstly, due to more
fluctuated loss or corrupted cloud data, secondly, based on the
variations in the number of files in the cloud users’ directory;

Initially the static approach would be good but it may not be
optimal solution at the later period. therefore, in this paper, we
have proposed Adaptive Integrity Checking method (AIC), which
would lead a way for adaptive dynamic hash tree methodology for
holding the cloud storage meta-data; which would drastically
increases the performance of integrity checking in terms of both
time and space complexity besides the benefits obtained in the
EDHT-n version and HEDHT methodologies of handling the
cloud storage integrity checking.

Keywords: Third Party Auditor (TPA), Adaptive Integrity
Checking (AIC), Hybrid Enhanced Dynamic Hash Tree
(HEDHT), Enhanced Dynamic Hash Tree (EDHT), Meta-Data,
Cloud Service Provider (CSP), Microservice, API.

I. INTRODUCTION

Storage data is the asset to the client, to reduce cost;
original file is being stored in cloud and deleted in the
end-user. Cloud storage is a model of networked enterprise
storage where data is stored in virtualized pools of storage
which are generally hosted by third parties. Cloud storage
provides customers with benefits, ranging from cost saving

and simplified convenience to mobility opportunities and

scalable service. These great features attract more and more
customers to utilize and storage their data to the cloud

Revised Manuscript Received on October 30, 2019.

* Correspondence Author
L Jambulingam*, Research Scholar, Department of Computer Science

and Engineering, Dr.M.G.R. Educational and Research Institute University,
Chennai, India.

T V Ananthan, Professor, Department of Computer Science and
Engineering, Dr.M.G.R. Educational and Research Institute University,
Chennai, India.

P S Rajakumar, Professor, Department of Computer Science and
Engineering, Dr.M.G.R. Educational and Research Institute University,
Chennai, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

storage: according to the analysis report, the volume of data in
cloud is expected to achieve 40 trillion gigabytes in 2020.
Even though cloud storage system has been widely adopted, it
fails to accommodate some important emerging needs such as
the abilities of auditing of cloud files by cloud clients. Thus
integrity should be foremost requirement, any corruption had
happened in CSP, it should be detected and corrected either
during the file request given by the users or during auditing
stage and made immediate recovery in order to maintain the
integrity in the form of consistency across all of its data
backup copies [14] by executing the recovery routines. Most
importantly, the user may not aware about these processes are
running in background, and thus Business Continuity
Planning would be ensured always. Subsequently the
trustworthiness towards the CSP would be improved.
EDHT-N and HEDHT are the proposed Hash Tree
Methodologies as advanced to MHT [2],[22] as shown in
Figure 1 and Figure 2, where meta-data of the cloud file will
be stored in static way, now we are proposed Adaptive
Integrity Checking for the same purpose in a dynamic manner
to speed up the audit and recovery process effectively
compared to the earlier proposed paper.

Fig.1 Enhanced Dynamic Hash Tree – Version 3

II. PROPOSED TECHNIQUE

Adaptive Integrity Checking (AIC)

Audit would be performed by TPA [5],[7],[10] on regular
frequency with cloud storage to determine the faulty file in
cloud, subsequently, TPA would record those error details in
its database to ascertain the correct integrity checking
methodology dynamically based on the Adaptive Integrity
Checking (AIC) method and the same to be adopted. Initially,
we say best methodology because it requires less number of
hash computations for tree formation as well as recovery
process compared to static EDHT-n/HEDHT methodologies.

An Adaptive Methodology for Integrity
Checking in Cloud Storage

L Jambulingam, T V Ananthan, P S Rajakumar

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.F8989.088619&domain=www.ijeat.org

An Adaptive Methodology for Integrity Checking in Cloud Storage

4471

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8989088619/2019©BEIESP
DOI: 10.35940/ijeat.F8989.088619
Journal Website: www.ijeat.org

TPA [12] would capture the error rates of each and every
user directories available in cloud on a particular frequencies
or whenever user access the files, hence based on these
various error rate statistics details, we could pick the most
occurring error rate

percentage or sometimes if the error rate percentage are not
repeating then we should take an average of all those recorded
value and finally decide which hash tree methodology to be
adopted.

We also determine appropriate hash tree methodologies to
store the cloud meta-data dynamically based on the variation
in the number of files in the cloud users’ directories. Thus it

improves the performance of the auditing. AIC batch
processing [11] would furthermore improve the speed of the
auditing as well as recovery process.

Fig.2 Hybrid Enhanced Dynamic Hash Tree

III. ADAPTIVE INTEGRITY CHECKING (AIC) IN

THIRD PARTY AUDITOR (TPA) USING API AND

MICROSERVICE

Integrity Checking APIs are developed in a RESTful style
as shown in the Table 1. These 10 APIs will have CRUD
capabilities GET (get a single item or a collection), POST
(add an item to a collection), PATCH (edit an item that
already exists in a collection), DELETE (delete an item in a
collection).

Table 1: APIs used for audit and error detection of
corrupted cloud storage to ease the recovery process.

Also it were developed in a microservice -a software
development technique - a variant of the service-oriented
architecture (SOA) architectural style that structures
an application as a collection of loosely coupled services, so
each services are fine-grained and the protocols are
lightweight.

As per Figure 3, User [3],[19],[21],[23] would request thru
Cloud client for enquiry/delete/update operation of cloud file
to the specific cloud service provider (CSP). API is a contract
that provides guidance for a consumer (Cloud Client) to use
the underlying service available in TPA, CSP, MDS,
Recovery system[17]. API is usually a portion of a
microservice, allowing for interaction with other
microservices.

The broken out sections of the business logic, each
encompassing a microservice. Thus complexity of the
application is reduced, as the different services have
well-defined interactions with each other.

Microservices architecture has become a common
approach for any cloud integrity checking to achieve agility

and the Continuous Delivery of applications to meet the
growing demand of the cloud users.

Microservices are small, light, modular software programs,
designed to fulfill one or a few purposes. They may be
deployed independently, in small groups, in a container, or as
part of a platform-as-a-service (PaaS) framework. They stand
in contrast to more traditional monolithic programs, which are
designed to fulfill several needs. Cloud Developers and users
today are concerned with speedy development cycles,
software scale, performance, and flexibility. Microservices
offer all of these.

Table.1 List of APIs for Cloud Integrity Checking

Cloud-file: User would request thru Cloud client [18],[21]
for enquiry/delete/update/create operation of cloud file to the
specific CSP thru TPA.
Root-digest: Only in case of enquiry and update operation,
proof of ownership [1],[4],[6],[15],[16],[8],[9] will be
determined, hence TPA would fetch the challenge
corresponds to the user cloud file and send to CSP, which in
turn send the root of EDHT-n/HEDHT for the received
challenge. If root send by CSP matches with the root available
in TPA then file reside in cloud is in intact.
Recover-file: Root of EDHT-n/HEDHT send by CSP does
not matches with the root available in TPA then file reside in
cloud is not intact. In case of file corrupt, invoke the recovery
process.

https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Application_(computing)
https://en.wikipedia.org/wiki/Coupling_(computer_programming)

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

4472

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8989088619/2019©BEIESP
DOI: 10.35940/ijeat.F8989.088619
Journal Website: www.ijeat.org

File-retrieve: In case of file intact, invoke the actual file for
view or modify. In case of modify, the file should be locked in
serialiable mode to avoid dirty read, phaton read,
non-repeatable read problems and sent to TPA.
Create-modified-file-digest: Fetched cloud file would be
modified by the user/group users whose got privileges and
subsequently sent to MDS.
File-push: In case of file update/create, the modified/created
file will be pushed to CSP along with meta-data received from
MDS to reconstruct the EDHT-n/HEDHT in case of existing,
else it would create new EDHT-n/HEDHT for the newly
created Cloud Directory file.
Digest-push: Cloud client send the meta-data received from
MDS [24] to TPA to reconstruct EDHT-n/HEDHT in case of
modified/created file or construct new EDHT-n/HEDHT in
case of newly created cloud directory file. Thus CSP and TPA
would always be kept in consistency the EDHT-n/HEDHT.
Tpa-audit: Audit would be performed by TPA on regular
frequency with CSP to determine the faulty file in cloud,
hence based on these values, TPA would record the errors in
TPA database to ascertain the correct integrity checking
methodology dynamically.
Create-new-file-digest: User can add new file to the cloud in
particular directory by requesting the cloud client which
subsequently request MDS to generate meta-data.

Fig.3 Implementation of Cloud Integrity Checking using
Microservice and API

Construct-edhtn or construct-hedht: TPA send the same
meta-data and methodology proposed by AICA to CSP
directly instead of sending to cloud client, CSP uses these
details to reconstruct the suggested EDHT-n/HEDHT.

Aica-execute: TPA would execute Adaptive Integrity
Checking Algorithm (AICA) to arrive which optimal hash
tree methodology to use for storing the cloud storage
meta-data (either to use new or to retain the old
methodology); by inputting the parameters obtained i.e., error
percentage rate identified during TPA audit using tpa-audit
API, which is noted as per Table 2 and variations in number of
files in the cloud user directories identified during file-push
to subsequently construct the appropriate suggested
EDHT-n/HEDHT as per Table 3. Once the new hash
tree methodologies is identified, it should be informed to CSP
by invoking the construct-edhtn or construct-hedht API in
order to synchronize between TPA and CSP of cloud storage
meta-data to maintain consistency, which would ease the
cloud storage auditing process efficiently as shown in Figure
4.

Fig.4 Adaptive Integrity Checking Flow

Table.2 Record Error Details in TPA database for
monthly frequency for Integrity Checking Purpose

Table.3 Best Hash Tree Methodology proposed to store

meta-data in cloud storage for dynamic integrity
checking of different Minimum-Maximum File

Range combination in CSP end with varied Error
rate %

An Adaptive Methodology for Integrity Checking in Cloud Storage

4473

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8989088619/2019©BEIESP
DOI: 10.35940/ijeat.F8989.088619
Journal Website: www.ijeat.org

IV. RESEARCH METHODOLOGY

After a series of attempts and summaries, we put forward
our solution as follow:

Table.4 Notations used in AIC Algorithm

Algorithm 1 find(£hashtree)

Input: Ns, Nf
Output: £hashtree
hcph ← 1;
£hashtree ← 0;
ifNf ==1 then
return 2;
 If (Ns> 0)
whileNs

£
hashtree<Nf

 £hashtree ← £hashtree+ 1
else
while(true)
hcph ← hcph * £hashtree;
ifhcph>= Nf then
break;
 £hashtree ← £hashtree+ 1;
end if
return £hashtree ;
Algorithm 1 is used to find out a height for Hybrid EDHT

and EDHT-n versions, basically it takes the number of files as
an input as well as the number of sibling to represent the
version number only in case of EDHT-n methodology and
return the height.

Algorithm 2 Nhtcc
Input: Ns, £hashtree
Output: Nhtcc
Nhtcc ← 0
if (Ns> 0)

Nhtcc← (£hashtree - 1) * Ns;

else
fori ←2; i<= £hashtree; i++
Nhtcc ← Nhtcc + i;
end for
end if
returnNhtcc;
Algorithm 2 is used to calculate the hash computation

required for the hybrid EDHT and EDHT-n version to
identify one defected file and thus it will be multiplied with
number of defected files to compute total hash computation to
find out all the faulty files.
Algorithm 3 hashTreeComputation

Input: Ns, £hashtree
Output: Nhtc
Nhtc 0;
inthcph ← 1
If (Ns> 0)
for j ← 0; j< £hashtree; j++
Nhtc← Nhtc + Ns

j;
end for
Else
forint j ←1; j<= £hashtree; j++
hcph ← hcph * j;
Nhtc ← Nhtc + hcph;
end for
returnNhtc;
Algorithm 5 is used to compute total hash computation

required for hybrid EDHT and EDHT-n version for the given
height of it and number of siblings only in case of EDHT-n
version.
Algorithm 4 adaptiveIntegrityChecking

Input:dp, Nf
Output: faic, minr, maxr
forNfc ← inf; Nfc<=Nf; Nfc ++
fd← Nfc /100 * dp;
£hvs ← find(£hashtree)(VNS, Nfc);
Best
TBhcvs ← 1 + findhtc(VNS, £hvs) *
 (fd/VNS + (fdmod VNS ==0 ? 0:1)) +
Nhtc(VNS, £hvs);

Worst
TWhcvs ← 1 + findhtc(VNS, £hvs) * fd+
Nhtc(VNS, £hvs);

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

4474

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8989088619/2019©BEIESP
DOI: 10.35940/ijeat.F8989.088619
Journal Website: www.ijeat.org

Average
TAhcvs← TBhcvs + TWhcvs

caic←fmhcfc(TBhcvsor TWhcvsor TAhcvs);
iffaic!= caicthen
tempr← maxr + 1;

faic← caic;
else
maxr ← Nfc;
faic← caic;
minr← tempr;

end if
end for
print faic+" "+minr+"-" + maxr;

Algorithm 4 is used to determine the optimal hash tree

methodology in dynamic way in order to store the cloud file
meta-data, which is a primary aim for Adaptive Integrity
Checking. We have used all the above algorithms to identify
the cloud file range to fit into a specific Best, Worst and
Average case possible hash tree methodology as well as to
dynamically change the cloud file to store its meta-data in
hash tree based on the error pattern, which were recorded
periodically by the TPA system, in order to do the speedy
recovery by reducing the hash computation process once we
identify the file reside in cloud is faulty, subsequently it
reduce space as well as time complexity.

V. RESULTS AND DISCUSSION

From Graph 1 to 6, it is clearly denotes the best, worst and
average Hash Tree Methodologies has been generated
dynamically to store cloud file meta-data for auditing purpose
based on the repeated value of error percentage as well as
average value of the error percentage noted in Table 3 for
various number of cloud file storage, thus Adaptive Integrity
Checking (AIC) would efficiently recover the file lost as well
as auditing process with less number of hash computation and
memory space compared to static data structure for storing the
cloud storage meta-data.

Graph 1

Graph 2

Graph 3

Graph 4

Graph 5

An Adaptive Methodology for Integrity Checking in Cloud Storage

4475

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8989088619/2019©BEIESP
DOI: 10.35940/ijeat.F8989.088619
Journal Website: www.ijeat.org

Graph 6

VI. CONCLUSION

Cloud Storage is an Infrastructure as a Service (IaaS) which
is a cost effective to an organizations with an integrity
challenges, thus storage intactness to be checked periodically.
In this paper we have done the research work to find the
dynamic hash tree methodology to store the cloud file
meta-data to perform the audit process for the cloud storage as
well as speedy recovery process for the lost or corrupted file
stored in the CSP to maintain integrity thru the efficient
proposed EDHT-n and HEDHT data structure rather static
way. Also, AIC batch processing has implemented to
speed-up both the processes.

ACKNOWLEDGMENT

In this paper, we proposed Adaptive Integrity Checking
based on these methodologies cloud storage integrity is
achieved optimally by batch auditing and subsequently batch
recovery in case, if file not intact in the cloud storage which
has the remarkable future in Cloud Integrity. I solemnly thank
my Guide and Computer Science and Engineering
Department Professors and University for preparing and
implementing this paper.

REFERENCES

1. A. Juels and J. B. S. Kaliski, “PORs: Proofs of retrievability for large
fildoes,” in Proc. 14th ACM Conf. Comput. Commun. Security,

Alexandria, USA, 2007, pp. 584–597.
2. Chang Liu, Rajiv Ranjan, Chi Yang, Xuyun Zhang, Lizhe Wang, Senior

Member, IEEE, and Jinjun Chen, Senior Member, IEEE, “MuR-DPA:
Top-Down Levelled Multi-Replica Merkle Hash Tree Based Secure
Public Auditing for Dynamic Big Data Storage on Cloud”, IEEE Trans.

Computers, vol. 64, no. 9, Sep. 2015.
3. WentingShen, Jing Qin, Jia Yu, RongHao, and Jiankun Hu, Senior

Member, IEEE, “Enabling Identity-Based Integrity Auditing and Data
Sharing with Sensitive Information Hiding for Secure Cloud Storage”,

IEEE Transactions on Information Forensics and Security, vol. 14, no.2,
Feb. 2019.

4. Yuan Zhang, Student Member, IEEE, ChunxiangXu, Member, IEEE,
Xiaohui Liang, Member, IEEE, Hongwei Li, Member, IEEE, Yi Mu,
Senior Member, IEEE, and Xiaojun Zhang, “Efficient Public

Verification of Data Integrity for Cloud Storage Systems from
Indistinguishability Obfuscation”, IEEE Transactions on Information
Forensics and Security, vol. 12, no.3, Mar. 2017.

5. Dan Gonzales, Member, IEEE, Jeremy Kaplan, Evan Saltzman, Zev
Winkelman, Dulani Woods, “Cloud-Trust - a Security Assessment
Model for Infrastructure as a Service (IaaS) Clouds”, IEEE Transactions
on Cloud Computing, vol 5 , no 3, July-Sept. 1 2017.

6. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.Kissner, Z.
Peterson, and D. Song, “Provable data possession at untrusted storages,”

in Proc. 14th ACM Conf. Comput. Commun. Secur., 2007, pp.
598–609.

7. Yujue Wang, Qianhong Wu, Member, IEEE, Bo Qin, Wenchang Shi
Robert H. Deng, Fellow, IEEE, Jiankun Hu, “Identity-Based Data
Outsourcing with Comprehensive Auditing in Clouds”, IEEE
Transactions on Information Forensics and Security, vol. 12, no.4, Apr.
2017.

8. G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z.
Peterson, and D. Song, “Remote data checking using provable data

possession,” ACM Trans. Inform. Syst. Secur., vol. 14, no. 1, pp. 1–34.
9. G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable and

efficient provable data possession,” in Proc. 4th Int. Conf. Secur.

Privacy Commun. Netow., 2008, pp. 1–10.
10. KaipingXue,Peilin Hong, 2014, 'A Dynamic Secure Group Sharing

Framework in Public Cloud Computing', IEEE Transactions on Cloud
Computing, vol. 2, no. 4, pp. 459-470.

11. JinxiaWei,RuZhang,JianyiLiu,JingLi,XinxinNiu,Yuangang Yao, 2017,
'Dynamic data integrity auditing for secure outsourcing in the cloud',
Concurrency and Computation: Practice and Experience, vol. 29, no. 12,
p. e4096.

12. C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia,
“Privacy-Preserving Public Auditing for Data,” in Proc. 16th ACM

Conf. Comput. Commun. Secur., 2009, pp. 213–222.
13. P. SyamKumar,R. Subramanian, 2012, 'RSA-based dynamic public

audit service for integrity verification of data storage in cloud computing
using Sobol sequence', International Journal of Cloud Computing, vol.
1, no. 2/3, p. 167.

14. XinTang,YiningQi,Yongfeng Huang, 2016, 'Reputation Audit in
Multi-cloud Storage through Integrity Verification and Data Dynamics',
2016 IEEE 9th International Conference on Cloud Computing
(CLOUD).

15. S. Venkatesan,AbhishekVaish, 2011, 'Multi-agent Based Dynamic Data
Integrity Protection in Cloud Computing', Computer Networks and
Information Technologies, pp. 76-82.

16. HyunjooKim,YoungsooKim,IkkyunKim,Hyuncheol Kim, 2018,
'Dynamic Information Extraction and Integrity Verification Scheme for
Cloud Security', Mobile and Wireless Technologies 2017, pp. 424-429.

17. P. SanthoshKumar,LathaParthiban,V. Jegatheeswari, 2018, 'Secured
data storage and auditing of data integrity over dynamic data in cloud',
International Journal of Internet Technology and Secured Transactions,
vol. 8, no. 4, p. 528.

18. ChunluWang,ChuanyiLiu,BinLiu,Yingfei Dong, 2014, 'DIV: Dynamic
integrity validation framework for detecting compromises on virtual
machine based cloud services in real time', China Communications, vol.
11, no. 8, pp. 15-27.

19. Santhosh Kumar, Sathyabama University, Latha Parthiban, Pondicherry
Community College, 2017, 'Cloud Data Integrity Auditing Over
Dynamic Data for Multiple Users', International Journal of Intelligent
Engineering and Systems, vol. 10, no. 5, pp. 239-246.

20. Jingwei Li, Jin Li, DongqingXie, and Zhang Cai, “Secure Auditing and

Deduplicating Data in Cloud”, IEEE Trans. Computers, vol. 65, no. 8,

Aug. 2016.
21. AotingHu,RuiJiang,Bharat Bhargava, 2018, 'Identity-Preserving Public

Integrity Checking with Dynamic Groups for Cloud Storage', IEEE
Transactions on Services Computing, pp. 1-1.

22. JianMao,YanZhang,PeiLi,TengLi,QianhongWu,Jianwei Liu, 2017, 'A
position-aware Merkle tree for dynamic cloud data integrity
verification', Soft Computing, vol. 21, no. 8, pp. 2151-2164.

23. Tao Jiang,XiaofengChen,Jianfeng Ma, 2016, 'Public Integrity Auditing
for Shared Dynamic Cloud Data with Group User Revocation', IEEE
Transactions on Computers, vol. 65, no. 8, pp. 2363-2373.

24. John Zic,ThomasHardjono, 2013, 'Towards a cloud-based integrity
measurement service', Journal of Cloud Computing: Advances, Systems
and Applications, vol. 2, no. 1, p. 4.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245519
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245519
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8024042
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206

