OPEN aACCESS

International Journal of Engineering and Advanced Technology (IJEAT)

I SSN: 2249-8958 (Online), Volume-8 I ssue-6, August, 2019

An Adaptive Methodology for Integrity

Checking in Cloud Storage

)

Chack Tar
updatas

L Jambulingam, T V Ananthan, P S Rajakumar

Abstract: Majority of the organization uses cloud for storage
purposein order to reducethecost aswell asmaintenance. Dueto
increasing threat from internal and external sources, there would
be possibility of corruption in the cloud storage files. Thus the
storage must to be monitored periodically for integrity checking.
Since most of the Data Owners have limited resources thus the
responsibility of integrity checking goes to the Third Party
Auditors (TPA). Usually the static way of deciding to use
particular hash tree methodology to store the cloud storage
meta-data, which ismainly used for integrity checking throughout
is inappropriate for two main reasons, firstly, due to more
fluctuated loss or corrupted cloud data, secondly, based on the
variations in the number of files in the cloud users’ directory;
Initially the static approach would be good but it may not be
optimal solution at the later period. therefore, in this paper, we
have proposed Adaptive I ntegrity Checking method (Al C), which
would lead a way for adaptive dynamic hash tree methodology for
holding the cloud storage meta-data; which would drastically
increases the performance of integrity checking in terms of both
time and space complexity besides the benefits obtained in the
EDHT-n version and HEDHT methodologies of handling the
cloud storage integrity checking.

Keywords: Third Party Auditor (TPA), Adaptive Integrity
Checking (AIC), Hybrid Enhanced Dynamic Hash Tree
(HEDHT), Enhanced Dynamic Hash Tree (EDHT), Meta-Data,
Cloud Service Provider (CSP), Microservice, API.

. INTRODUCTION

Storage data is the asset to the client, to reduce cost;
original file is being stored in cloud and deleted in the
end-user. Cloud storage is a model of networked enterprise
storage where data is stored in virtualized pools of storage
which are generally hosted by third parties. Cloud storage
provides customers with benefits, ranging from cost saving
and simplified convenience to mobility opportunities and
scalable service. These great features attract more and more
customers to utilize and storage their data to the cloud

Revised Manuscript Received on October 30, 2019.

* Correspondence Author

L Jambulingam*, Research Scholar, Department of Computer Science
and Engineering, Dr.M.G.R. Educational and Research Institute University,
Chennai, India.

T V Ananthan, Professor, Department of Computer Science and
Engineering, Dr.M.G.R. Educational and Research Ingtitute University,
Chennai, India

P S Rajakumar, Professor, Department of Computer Science and
Engineering, Dr.M.G.R. Educational and Research Institute University,
Chennai, India

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). Thisis an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Retrieval Number F8989088619/2019©BEIESP
DOI: 10.35940/ijeat.F8989.088619
Journal Website: www.ijeat.org

4470

storage: according to the analysisreport, the volume of datain
cloud is expected to achieve 40 trillion gigabytes in 2020.
Even though cloud storage system has been widely adopted, it
failsto accommodate some important emerging needs such as
the abilities of auditing of cloud files by cloud clients. Thus
integrity should be foremost requirement, any corruption had
happened in CSP, it should be detected and corrected either
during the file request given by the users or during auditing
stage and made immediate recovery in order to maintain the
integrity in the form of consistency across al of its data
backup copies [14] by executing the recovery routines. Most
importantly, the user may not aware about these processes are
running in background, and thus Business Continuity
Planning would be ensured aways. Subsequently the
trustworthiness towards the CSP would be improved.
EDHT-N and HEDHT are the proposed Hash Tree
Methodologies as advanced to MHT [2],[22] as shown in
Figure 1 and Figure 2, where meta-data of the cloud file will
be stored in static way, now we are proposed Adaptive
Integrity Checking for the same purpose in a dynamic manner
to speed up the audit and recovery process effectively
compared to the earlier proposed paper.

Fig.1 Enhanced Dynamic Hash Tree— Version 3

II. PROPOSED TECHNIQUE

Adaptive Integrity Checking (AIC)

Audit would be performed by TPA [5],[7],[10] on regular
frequency with cloud storage to determine the faulty file in
cloud, subsequently, TPA would record those error detailsin
its database to ascertain the correct integrity checking
methodology dynamically based on the Adaptive Integrity
Checking (Al C) method and the sameto be adopted. Initially,
we say best methodology because it requires less number of
hash computations for tree formation as well as recovery
process compared to static EDHT-n/HEDHT methodol ogies.

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Exploring Innovation

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.F8989.088619&domain=www.ijeat.org

An Adaptive Methodology for Integrity Checking in Cloud Storage

TPA [12] would capture the error rates of each and every
user directories available in cloud on a particular frequencies
or whenever user access the files, hence based on these
various error rate statistics details, we could pick the most
occurring error rate

percentage or sometimesif the error rate percentage are not
repeating then we should take an average of all those recorded
value and finally decide which hash tree methodology to be
adopted.

We also determine appropriate hash tree methodol ogies to
store the cloud meta-data dynamically based on the variation
in the number of files in the cloud users’ directories. Thus it
improves the performance of the auditing. AIC batch
processing [11] would furthermore improve the speed of the
auditing as well as recovery process.

@, ©,
QOO OOQ)

00000084 TITITIC

Fig.2 Hybrid Enhanced Dynamic Hash Tree

1. ADAPTIVEINTEGRITY CHECKING (AIC)IN
THIRD PARTY AUDITOR (TPA) USING APl AND
MICROSERVICE

Integrity Checking APIs are developed in a RESTful style
as shown in the Table 1. These 10 APIs will have CRUD
capabilities GET (get a single item or a collection), POST
(add an item to a collection), PATCH (edit an item that
already existsin a collection), DELETE (delete an itemin a
collection).

Table 1: APIs used for audit and error detection of
corrupted cloud storage to ease the recovery process.

Also it were developed in a microservice -asoftware
development technique - a variant of the service-oriented
architecture (SOA) architectural style that structures
an application as a collection of loosely coupled services, so
each services are fine-grained and the protocols are
lightweight.

Asper Figure 3, User [3],[19],[21],[23] would request thru
Cloud client for enquiry/delete/update operation of cloud file
to the specific cloud service provider (CSP). API isacontract
that provides guidance for a consumer (Cloud Client) to use
the underlying service available in TPA, CSP, MDS,
Recovery system[17]. APl is usualy a portion of a
microservice, alowing for interaction with other
Mi CroServices.

The broken out sections of the business logic, each
encompassing a microservice. Thus complexity of the
application is reduced, as the different services have
well-defined interactions with each other.

Microservices architecture has become a common
approach for any cloud integrity checking to achieve agility

Retrieval Number F8989088619/2019©BEIESP
DOI: 10.35940/ijeat.F8989.088619
Journal Website: www.ijeat.org

4471

and the Continuous Delivery of applications to meet the
growing demand of the cloud users.

Microservices are small, light, modular software programs,
designed to fulfill one or a few purposes. They may be
deployed independently, in small groups, in a container, or as
part of a platform-as-a-service (PaaS) framework. They stand
in contrast to moretraditional monolithic programs, which are
designed to fulfill several needs. Cloud Developers and users
today are concerned with speedy development cycles,
software scale, performance, and flexibility. Microservices
offer al of these.

Table.1l List of APIsfor Cloud Integrity Checking

| RE5ST Provider | Consumer | Requ
APT est
Tvpe
1 cloud- TPA Cloud PAT
file Chent CH;
GET;
DEL
ETE
2 | root- CSP TPA GET
digest
3a | recover- | Recovery | TPA GET
file System
3b | file- CSP TPA GET
retrieve
4 create- MDS3 Cloud POST
modified client
-file-
digest
5 | file-push | CSP Cloud POST
client
i) digest- TRA Cloud POST
push client
7 create- MD3 Cloud POST
new-file- client
digest
2 | tpa-audit | CEP TPA GET
a construct | CSP TPA POST
-edhtn
constrct
-hedht

Cloud-file: User would reguest thru Cloud client [18],[21]
for enquiry/delete/update/create operation of cloud file to the
specific CSP thru TPA.

Root-digest: Only in case of enquiry and update operation,
proof of ownership [1],[4],[6],[15],[16],[8],[9] will be
determined, hence TPA would fetch the challenge
corresponds to the user cloud file and send to CSP, which in
turn send the root of EDHT-n/HEDHT for the received
challenge. If root send by CSP matcheswith the root available
in TPA thenfilereside in cloud isin intact.

Recover-file: Root of EDHT-n/HEDHT send by CSP does
not matches with the root available in TPA then file residein
cloud isnot intact. In case of file corrupt, invoke the recovery
process.

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Application_(computing)
https://en.wikipedia.org/wiki/Coupling_(computer_programming)

OPEN aACCESS

File-retrieve: In case of file intact, invoke the actua file for
view or modify. In case of modify, the file should be locked in
seridliable mode to avoid dirty read, phaton read,
non-repeatable read problems and sent to TPA.
Create-modified-file-digest: Fetched cloud file would be
modified by the user/group users whose got privileges and
subsequently sent to MDS.

File-push: In case of file update/create, the modified/created
filewill be pushed to CSP a ong with meta-data received from
MDS to reconstruct the EDHT-n/HEDHT in case of existing,
else it would create new EDHT-n/HEDHT for the newly
created Cloud Directory file.

Digest-push: Cloud client send the meta-data received from
MDS[24] to TPA to reconstruct EDHT-n/HEDHT in case of
modified/created file or construct new EDHT-n/HEDHT in
case of newly created cloud directory file. Thus CSP and TPA
would always be kept in consistency the EDHT-n/HEDHT.
Tpa-audit: Audit would be performed by TPA on regular
frequency with CSP to determine the faulty file in cloud,
hence based on these values, TPA would record the errorsin
TPA database to ascertain the correct integrity checking
methodology dynamically.

Create-new-file-digest: User can add new fileto the cloud in
particular directory by requesting the cloud client which
subsequently request MDS to generate meta-data.

CLOUD USERS
CLOUD CLIENT
®[® o6 [® [OYG) &
APL : API API API
e META DATA CLOUD FILE|
TPA 4 Csp SERVER RECOVERY
LOGIC | LocIC LOGIC LOGIC
DATA DATA DATA DATA
ACCESS ACCESS ACCESS ACCESS
LAYER LAYER LAYER LAYER

Fig.3 Implementation of Cloud Integrity Checking using
Microservice and API

Construct-edhtn or construct-hedht: TPA send the same
meta-data and methodology proposed by AICA to CSP
directly instead of sending to cloud client, CSP uses these
details to reconstruct the suggested EDHT-n/HEDHT.

Aica-execute: TPA would execute Adaptive Integrity
Checking Algorithm (AICA) to arrive which optimal hash
tree methodology to use for storing the cloud storage
meta-data (either to use new or to retain the old
methodology); by inputting the parameters obtained i.e., error
percentage rate identified during TPA audit using tpa-audit
API, whichisnoted as per Table 2 and variationsin number of
filesin the cloud user directories identified during file-push
to subsequently construct the appropriate suggested
EDHT-n/HEDHT as per Table 3. Once the new hash

tree methodologiesisidentified, it should beinformed to CSP
by invoking the construct-edhtn or construct-hedht API in
order to synchronize between TPA and CSP of cloud storage
meta-data to maintain consistency, which would ease the
cloud storage auditing process efficiently as shown in Figure
4.

Retrieval Number F8989088619/2019©BEIESP
DOI: 10.35940/ijeat.F8989.088619
Journal Website: www.ijeat.org

4472

International Journal of Engineering and Advanced Technology (IJEAT)

I SSN: 2249-8958 (Online), Volume-8 I ssue-6, August, 2019

‘ OUTPUT OF THE TPA-AUDIT APL ‘ ‘ QUTPUT OF THE DIGEST-PUSH APL |

| TPA-AIC LOGIC

GIVEN ERROR STATISTICS bébmfg gfgtg’ll}: lﬁi\SD
ABOUT CLOUD FILE FROM CSP DIRECTORY SIZE

’ ADAPTIVE INTEGRITY CHECKING (AIC) |

‘ PRODUCE OPTIMAL SOLUTION FOR INTEGRITY CHECKING |

‘ OPTIMAL SOLUTION USED TO RECONSTRUCT EDHT-n / HEDHT USING AN APIs |

Fig.4 Adaptive Integrity Checking Flow

Table.2 Record Error Detailsin TPA database for
monthly frequency for Integrity Checking Purpose

Time Error % for
Period 50K 200K 300K TOOK 1500K 3000K T000K
Files Files Files Files Files Files Files
January 15 1 725 9 0 6 0.6
February p X 3 6.75 12 3 6 0.7
March 125 1 9 5 3 6 0.5
April 15 3 5 5 4 5 1.9
May 225 15 6 5 44 5 0.4
June 1 2.75 8 7 7 5 13
July 3 2 2 11 3.5 7 1.5
August 1 0.75 12 0 3.5 7 11
September| 2.75 25 5 7 16 5 1
Qctober L75 1.25 2 725 3 4 1
November 2.5 25 9 6.75 0 8 1
December 2 2.75 12 9 3 8 1

Table.3 Best Hash Tree M ethodology proposed to store
meta-data in cloud storage for dynamic integrity
checking of different Minimum-Maximum File
Range combination in CSP end with varied Error

rate %
Best Min-Max Best l::;;\gl:x Best Min-Max
Hash Tree Range Hash Tree Hash Tree Range
Methodologi (NIL Error) | Methodologies g“[:“::') Methodologies | (15%0 Error)
HEDHT 1-120 HEDHT 1-120 HEDHT 1-120
EDHT-3 121-125 EDHI-3 121-123 EDHT-3 121-125
MHT 126-128 MHT 126-128 MHT 126-128
EDHT-6 129 216 EDHT-6 129-216 EDHT-6 128-216
EDHT-4 217-256 EDHT-4 217-256 EDHT-3 217-243
EDHT-7 257-343 EDHT-7 237-343 EDHT-4 244-256
EDHT-5 344-625 EDHT-5 344-625 EDHT-7 257-343
HEDHT 626-720 HEDHT 626-720 EDHT-3 344-625
EDHT-3 721-729 EDHT-3 721-729 HEDHT 626-720
EDHT-4 730-1024 EDHT-4 730-1024 EDHT-3 721-729
EDHT-6 1025-1296 EDHT-6 1023-1296 EDHT-4 730-1024
EDHT-7 1297-2401 EDHT-3 1267-2187 EDHT-6 1025-1296
EDHT-5 2402-3125 EDHT-7 2188-2401 EDHT-3 12072187
EDHT-4 3126-4096 EDHT-3 2402-3125 EDHT-7 2188-2401
HEDHT 4087-5040 EDHT-4 3126-4096 EDHT-3 2402-3125
EDHT-6 3041-7776 HEDHT 4007-3040 EDHT-4 3126-4096
MHT 7777-8192 EDHT-3 3041-6561 HEDHT 4097-5040
EDHT-3 8193-15623 EDHT-6 6362-7776 EDHT-3 3041-6561
EDHT-7 15626-16807 MHT 7777-8192 EDHT-6 §362-7776
EDHT-3 16808-19683 EDHT-3 8193-1159% MHT 7777-8192
HEDHT 1968440320 EDHT-4 11600-16384} EDHT-4 5193-16384
Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Exploring Innovation

An Adaptive Methodology for Integrity Checking in Cloud Storage

IV. RESEARCH METHODOLOGY

After a series of attempts and summaries, we put forward

our solution as follow:

Table.4 Notationsused in AIC Algorithm

find{£y; | To find height of hash tree of
shira) particular methodology
fhsngs: | Height ofhash tree
N; Number Of Siblings required in a
particular methodology
Wz Vanous Number of Siblings ie.,
EDHT-31=z 3; EDHT4 iz 4 and =0 on
Ns MNumber of files
Mg Number of files cunrently
Mites Mumber of hash tree Defect
calculation to comect it
MNhie MNumber of hash tree computation for
each methodology
findy;. Find hash tree defect comrection
dy Defect percentage
ity Minirmum range
maxy Mazximmum range
faic Final Adaptive Integnty Checking
Method
Caic Current Best Integnty Checking
Method
temp, Temporary range
fa Defected files
Ehvs Height of hash tree for wvanous
number of siblings
TAp Total average hash tree calculation
for varnous mumber of siblings
TWho: | Total Worst haszh tree calculation for
varous number of siblings
TByo: Total Best hash tree calculation for
wvarous number of siblings
fhehe To find mnmum hash tree
calculation from the collection
hegn Hash caleulation at particular height
Inf Irutial Mumber of files
Algorithm 1 find(Enasiree)
Input: Ng, Nt
OUtpUt: £hashtree
thh —1;
Enasiree < 0;
ifN; ==1 then
return 2;
If (N> 0)

whi IeNSEhashtree<Nf
Enasttree < Lhashrest 1

else
while(true)
hcph «— hcph * Enashirees
ifhcph>: Nt then
break;

Enastree < Lhashirest L
end if
return E'hashtree ;
Algorithm 1 is used to find out a height for Hybrid EDHT
and EDHT-n versions, basically it takes the number of filesas
an input as well as the number of sibling to represent the

version number only in case of EDHT-n methodology and

return the height.

Retrieval Number F8989088619/2019©BEIESP
DOI: 10.35940/ijeat.F8989.088619
Journal Website: www.ijeat.org

4473

Algorithm 2 Npee

lnpUt: NS! £hashtr(-:«e
Output: Npec

Nhiee <— O

if (Ns>0)

Nhtcc‘_ (£hashtree - l) * Ns;
ese

fori «=2; i<= £hasiree, I+
Nhtce < Nhtee + 1

end for

end if

returnNpcc;

Algorithm 2 is used to calculate the hash computation

required for the hybrid EDHT and EDHT-n version to
identify one defected file and thus it will be multiplied with
number of defected filesto compute total hash computation to
find out all the faulty files.

Algorithm 3 hashTreeComputation

InpUt: N51 £hashtree

Output: Ny

Nhtc 0;

inthcy, < 1

If (N> 0)

for J — 0; j< £ha$1tree; j++
Nhice— Npe + Ng;

end for

Else

fori ntj <1 j<= Ehashiree: j++
hCph «— thh * j;

Nhte = Nhe + thh;

end for

retur NNp;

Algorithm 5 is used to compute total hash computation

required for hybrid EDHT and EDHT-n version for the given
height of it and number of siblings only in case of EDHT-n
version.

Algorithm 4 adaptivel ntegrityChecking

Input:dy, Ny
Output: f4c, min,, max,
forNsc < ipr; Nie<=Nf; Nic ++
fd<— Nsc /100 * dp,
Eivs — find(£hashtree)(VNSy Nfc);
Best
TBhos 1+ findhtc(VNsa £hvs) *
(fo/VNs + (fgmod VNg==0?0:1)) +
Nhic(VNs, £rvs);

Worst
TWhevs < 1 + findno(VNs, £nve) * fot
NhtC(V NS: £hvs);

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

OPEN 8&CCESS

Average

TAnost— TBhovs+ TWhevs
Caict—Trmncic(TBheveOr TWhauOF TApeys);
iffa'c!z Caicthen
temp«— max; + 1,
faic‘_ Caics

else

maX; < Nic;
fac— Cac:

min,«— temp,;
end if

end for

print f4.+" "+min4+"-" + max,;

Algorithm 4 is used to determine the optimal hash tree
methodology in dynamic way in order to store the cloud file
meta-data, which is a primary aim for Adaptive Integrity
Checking. We have used all the above algorithms to identify
the cloud file range to fit into a specific Best, Worst and
Average case possible hash tree methodology as well as to
dynamically change the cloud file to store its meta-data in
hash tree based on the error pattern, which were recorded
periodically by the TPA system, in order to do the speedy
recovery by reducing the hash computation process once we
identify the file reside in cloud is faulty, subsequently it
reduce space as well as time complexity.

V. RESULTSAND DISCUSSION

From Graph 110 6, it is clearly denotes the best, worst and
average Hash Tree Methodologies has been generated
dynamically to store cloud file meta-data for auditing purpose
based on the repeated value of error percentage as well as
average value of the error percentage noted in Table 3 for
various number of cloud file storage, thus Adaptive Integrity
Checking (AIC) would efficiently recover thefile lost as well
as auditing process with less number of hash computation and
memory space compared to static datastructure for storing the
cloud storage meta-data.

Best Case - Based On Average Value Of Error %

20000000
15000000 12723254

10000000

Hash calculation

5000000 1302 80123?5540

95382 363938 51181
0

50K 7000K

200K

300K 700K 1500K 3000K

-3000000
EDHT-4 EDHT-6 HEDHT EDHT-7 EDHT-6 HEDHT EDHT-6

Number of Files and Hash Tree Methodologies
To Store Cloud File Meta-Data

Graph 1

Retrieval Number F8989088619/2019©BEIESP
DOI: 10.35940/ijeat.F8989.088619
Journal Website: www.ijeat.org

4474

International Journal of Engineering and Advanced Technology (IJEAT)

I SSN: 2249-8958 (Online), Volume-8 I ssue-6, August, 2019

Best Case - Based On Most Repeated Error %
16000000
14000000 127278254
- 12000000
_g 10000000
'—; 2000000
t_‘-; 6000000
: 4000000
% 2000000 91382 363938 438462
T
]
-2000000 50K 700K 1500K 3000K 7000K
EDHT-4 EDHT-6 HEDHT EDHT-7 EDHT-6 HEDHT EDHT-6
Number of Files and Hash Tree Methodologies To Store
Cloud File Meta-Data
Graph 2
‘Worst Case - Based On Average Value Of Error %
20000000
2 15000000
£
= 10000000
-
L
“ 5000000
-
[
L
= 0
50K 200K 300K 700K 1500K 3000K 7000K
-5000000
EDHT-3 EDHT-4 EDHT-5 EDHT-4 EDHT-3 EDHT-4 EDHT-5
Number of Files and Hash Tree Methodologies
To Store Cloud File Meta-Data
Graph 3
Worst Case - Based On Most Repeated Error %
20000000
15707032
= 15000000
2
=
< 10000000
1=}
T
Y 5000000
G 103382 493526 673114
£ 0
St 700K | 1500K 3000K 7000K
-5000000
EDHT-4 EDHT-4 EDHT-5 EDHT-7 EDHT-3 HEDHT EDHT-5
Number of Files and Hash Tree Methodologies
To Store Cloud File Meta-Data
Graph 4
Average Case - Based On Average Value Of Error %
20000000
14298245
2 15000000
=
E 10000000
" 233280132725
; 5000000 107382 433931 922462
L 0
50K | 200K @ 300K 700K 1500K 3000K 7000K
-5000000
EDHT-4 EDHT-6 HEDHT EDHT-7 EDHT-6 HEDHT EDHT-6
Number of Files and Hash Tree Methodologies
To Store Cloud File Meta-Data

Graph 5

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Exploring Innovation

An Adaptive Methodology for Integrity Checking in Cloud Storage

Average Case - Based On Most Repeated Error %
20000000

15000000
10000000

5000000

Hash calculation

50K

200K 300K 700K 1500K 3000K 7000K

-3000000 £y 4 EDHT-6 HEDHT EDHT-7 EDHT-6 HEDHT EDHT-6

Number of Files and Hash Tree Methodologies
To Store Cloud File Meta-Data

Graph 6

VI. CONCLUSION

Cloud Storage is an Infrastructure as a Service (1aaS) which
is a cost effective to an organizations with an integrity
challenges, thus storage intactness to be checked periodically.
In this paper we have done the research work to find the
dynamic hash tree methodology to store the cloud file
meta-datato perform the audit processfor the cloud storage as
well as speedy recovery process for the lost or corrupted file
stored in the CSP to maintain integrity thru the efficient
proposed EDHT-n and HEDHT data structure rather static
way. Also, AIC batch processing has implemented to
speed-up both the processes.

ACKNOWLEDGMENT

In this paper, we proposed Adaptive Integrity Checking
based on these methodologies cloud storage integrity is
achieved optimally by batch auditing and subsequently batch
recovery in case, if file not intact in the cloud storage which
has the remarkable future in Cloud Integrity. | solemnly thank
my Guide and Computer Science and Engineering
Department Professors and University for preparing and
implementing this paper.

REFERENCES

1. A.JuesandJ.B. S. Kaliski, “PORs: Proofs of retrievability for large
fildoes,” in Proc. 14th ACM Conf. Comput. Commun. Security,
Alexandria, USA, 2007, pp. 584-597.

2. ChangLiu, Rgjiv Ranjan, Chi Yang, Xuyun Zhang, Lizhe Wang, Senior
Member, IEEE, and Jinjun Chen, Senior Member, IEEE, “MuR-DPA:
Top-Down Levelled Multi-Replica Merkle Hash Tree Based Secure
Public Auditing for Dynamic Big Data Storage on Cloud”, IEEE Trans.
Computers, vol. 64, no. 9, Sep. 2015.

3. WentingShen, Jing Qin, Jia Yu, RongHao, and Jiankun Hu, Senior
Member, IEEE, “Enabling Identity-Based Integrity Auditing and Data
Sharing with Sensitive Information Hiding for Secure Cloud Storage”,
|IEEE Transactions on Information Forensics and Security, vol. 14, no.2,
Feb. 2019.

4. Yuan Zhang, Student Member, IEEE, ChunxiangXu, Member, IEEE,
Xiaohui Liang, Member, IEEE, Hongwei Li, Member, IEEE, Yi Mu,
Senior Member, IEEE, and Xiaojun Zhang, “Efficient Public
Verification of Data Integrity for Cloud Storage Systems from
Indistinguishability Obfuscation”, |EEE Transactions on Information
Forensics and Security, vol. 12, no.3, Mar. 2017.

5. Dan Gonzales, Member, |IEEE, Jeremy Kaplan, Evan Saltzman, Zev
Winkelman, Dulani Woods, “Cloud-Trust - a Security Assessment
Model for Infrastructure as a Service (IaaS) Clouds”, |IEEE Transactions
on Cloud Computing, vol 5, no 3, July-Sept. 1 2017.

6. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.Kissner, Z.
Peterson, and D. Song, ‘“Provable data possession at untrusted storages,”

Retrieval Number F8989088619/2019©BEIESP
DOI: 10.35940/ijeat.F8989.088619
Journal Website: www.ijeat.org

10.

11

12.

13.

14.

15.

16.

17.

18.

10.

20.

21.

22.

23.

24.

4475

in Proc. 14th ACM Conf. Comput. Commun. Secur., 2007, pp.
598-609.

Y ujue Wang, Qianhong Wu, Member, IEEE, Bo Qin, Wenchang Shi
Robert H. Deng, Fellow, IEEE, Jiankun Hu, “Identity-Based Data
Outsourcing with Comprehensive Auditing in Clouds”, |EEE
Transactions on Information Forensics and Security, vol. 12, no.4, Apr.
2017.

G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z.
Peterson, and D. Song, “Remote data checking using provable data
possession,” ACM Trans. Inform. Syst. Secur., vol. 14, no. 1, pp. 1-34.
G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable and
efficient provable data possession,” in Proc. 4th Int. Conf. Secur.
Privacy Commun. Netow., 2008, pp. 1-10.

KaipingXue,Peilin Hong, 2014, 'A Dynamic Secure Group Sharing
Framework in Public Cloud Computing', IEEE Transactions on Cloud
Computing, vol. 2, no. 4, pp. 459-470.

JinxiaWel ,RuZhang,JianyiLiu,JingLi,XinxinNiu,Y uangang Y ao, 2017,
‘Dynamic data integrity auditing for secure outsourcing in the cloud',
Concurrency and Computation: Practice and Experience, val. 29, no. 12,
p. e4096.

C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia,
“Privacy-Preserving Public Auditing for Data,” in Proc. 16th ACM
Conf. Comput. Commun. Secur., 2009, pp. 213-222.

P. SyamKumar,R. Subramanian, 2012, 'RSA-based dynamic public
audit servicefor integrity verification of datastoragein cloud computing
using Sobol sequence, International Journal of Cloud Computing, vol.
1, no. 2/3, p. 167.

XinTang,YiningQi,Yongfeng Huang, 2016, 'Reputation Audit in
Multi-cloud Storage through Integrity Verification and Data Dynamics,
2016 IEEE 9th International Conference on Cloud Computing
(CLOUD).

S. Venkatesan,AbhishekVaish, 2011, 'Multi-agent Based Dynamic Data
Integrity Protection in Cloud Computing’, Computer Networks and
Information Technologies, pp. 76-82.

HyunjooKim,Y oungsooKim, kkyunKim,Hyuncheol Kim, 2018,
‘Dynamic Information Extraction and Integrity Verification Scheme for
Cloud Security', Mobile and Wireless Technologies 2017, pp. 424-429.
P. SanthoshKumar,LathaParthiban,V. Jegatheeswari, 2018, 'Secured
data storage and auditing of data integrity over dynamic datain cloud,
International Journal of Internet Technology and Secured Transactions,
val. 8, no. 4, p. 528.

ChunluWang,ChuanyiLiu,BinLiu,Yingfei Dong, 2014, 'DIV: Dynamic
integrity validation framework for detecting compromises on virtual
machine based cloud servicesin real time', China Communications, vol.
11, no. 8, pp. 15-27.

Santhosh Kumar, Sathyabama University, Latha Parthiban, Pondicherry
Community College, 2017, 'Cloud Data Integrity Auditing Over
Dynamic Data for Multiple Users, International Journal of Intelligent
Engineering and Systems, vol. 10, no. 5, pp. 239-246.

Jingwei Li, Jin Li, DonggingXie, and Zhang Cai, “Secure Auditing and
Deduplicating Data in Cloud”, IEEE Trans. Computers, vol. 65, no. 8,
Aug. 2016.

AotingHu,RuiJiang,Bharat Bhargava, 2018, 'ldentity-Preserving Public
Integrity Checking with Dynamic Groups for Cloud Storage, |IEEE
Transactions on Services Computing, pp. 1-1.

JianMao,Y anZhang,PeiLi, TengLi,QianhongWu,Jianwei Liu, 2017, ‘A
position-aware Merkle tree for dynamic cloud data integrity
verification', Soft Computing, vol. 21, no. 8, pp. 2151-2164.

Tao Jiang,XiaofengChen,Jianfeng Ma, 2016, 'Public Integrity Auditing
for Shared Dynamic Cloud Data with Group User Revocation’, IEEE
Transactions on Computers, vol. 65, no. 8, pp. 2363-2373.

John Zic,ThomasHardjono, 2013, 'Towards a cloud-based integrity
measurement service', Journal of Cloud Computing: Advances, Systems
and Applications, vol. 2, no. 1, p. 4.

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Exploring Innovation

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245519
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245519
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8024042
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206

