Process Parameters Optimization using Kuhn-Tucker Conditions For Plasma Arc Welding Using Austenitic Stainless Steel Alloy-304l Plates

A. Suresh, G. Diwakar

Abstract: This paper is intended to evaluate the process parameters and decision variables for framing an optimization function to make the welding of Austenitic stainless steel alloy-304L plates more reliable. This is made by finding the decision variables involved in the welding operation. It is always important for the process to be done effectively and efficiently. The present work evaluates various parameters involved in plasma arc welding, then were analyzed critically with respect to their boundary conditions. Then the optimization function is formulated, there after the constraints involved in making the welding process were found and also the conditions were defined. Next optimization of this objective function is done by appropriate methods. Here in this case the objective function involved multiple number of decision variables and also it has got mixed type of constraints. Hence in order to solve such problem Kuhn-tucker method is applied. And at the end the optimal values for the decision variables were found. By adapting these set of values in the welding the process got optimized. Keywords: Welding, Optimization, Kuhn-tucker conditions.

I. INTRODUCTION

The plasma arc welding is a special purpose welding operation for better accuracy and precision. It has been considered for the welding to high end applications for the better strength. But during the process the machine has failed many times due to various problems. Hence all the failures have refined and quantified for the assessment and optimization. On the other hand the work piece that is used for welding is austenitic stainless steel alloy-304L. Basically this material is of moderate hardness and moderate strength with a annealed crystal structure. The general tendency of the material should not get distracted because of the operation to be imposed on it. This got analyzed by considering the response of the material in terms of surface roughness, surface hardness and changes in micro structure.\(^1\)

Often it is observed that for a period of about 20-45\% of operating time of weld it the process has yielded the best results like a youth age in a bath tub curve. The above quantified data has been considered as the boundary conditions for the operation of welding and the corresponding parameters were optimized. This has been illustrated with the below flow chart.

II. ANALYSIS

Machine: Here in this part the analysis of the above mentioned methodology is carried out. And as it has two things to consider viz., The machine and the work piece each of these will be analyzed one after another. The failure data of the machine is considered based on the following assumptions. They are:

1. The machine run time in a cycle is limited to 3 hours and the gap between each cycle is taken as 30 minutes. In a day the maximum permissible working hours are 3 cycles that are 9 hours a day.
2. During the cycle operation time the machine subjected different types of hazards and they are quantified based on the operating times and failures times. This process is continued for a period of three six months.
3. The environmental and human fatigue is not considered as the failures.

As it is known from the reliability fundamentals and machine life cycle, the time between failures and time to repair were analyzed and the trend of failures is found. The tests used here for the trend analysis are Cumulative plot test, Eye ball test, Karl pearson test with (i=1), Karl pearson test with (i=2) and Serial correlation tests of (i=1) and (i=2). Based on the above mentioned four tests the majority that is four out six results were taken as the results. As the above mentioned methods involve both graphical and analytical results the accurate results will be obtained. The same method is carried out for the time between failure data and time to repair data. Hence the reliability and availability will be obtained.\(^2\) The below figure (Fig 1) shows the methodology of the process that was carried out. The below table (Table 1) depicts the outcomes of the various tests and their verdicts. The first table indicates the data of time between failures and the second table depicts the outcomes pertaining to the time to repair.

\(^1\) A. Suresh, Department of Mechanical Engineering, K L (Deemed to be University), Vaddeshwarum, Guntur, India
\(^2\) G. Diwakar, Department of Mechanical Engineering, K L (Deemed to be University), Vaddeshwarum, Guntur, India

Setting of objective function of welding using PAW

Collection and refining the data

Machine

Work piece

Failure data analysis and Trend test

Recording the material response against the welding operation

Trend test

No

Total time on test plotting

FIT evaluation

Write the results

NHPP models such as power law process, IBM, Cox and Lewis models

Categorization of Material Response

Defining Objective function, Constraints set, conditions

Applying Kuhn-Tucker equations

Write the results

Figure 1: Flow chart of Process Parameters Optimization Using Kuhn-Tucker Conditions for Plasma Arc Welding Using Austenitic Stainless Steel Alloy-304L Plates

Table 1: List of results based on Time between failures and Time to repair with 6 tests.

<table>
<thead>
<tr>
<th>Item</th>
<th>Cumulative Plot Test</th>
<th>Eye Ball Test</th>
<th>Karl Pearson (i-1)</th>
<th>Karl Pearson (i-2)</th>
<th>Serial Correlation (i) vs (i-1)</th>
<th>Serial Correlation (i-1) vs (i-2)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 2018</td>
<td>Weak - ve Trend</td>
<td>+ ve Trend</td>
<td>+ ve Trend</td>
<td>+ ve Trend</td>
<td>Weak + ve Trend</td>
<td>+ ve Trend</td>
<td></td>
</tr>
<tr>
<td>Sep 2018</td>
<td>+ ve Trend</td>
<td>Weak + ve Trend</td>
<td>Weak + ve Trend</td>
<td>Weak + ve Trend</td>
<td>Very Weak + ve Trend</td>
<td>+ ve Trend</td>
<td></td>
</tr>
<tr>
<td>Oct 2018</td>
<td>Weak + ve Trend</td>
<td>Weak + ve Trend</td>
<td>Weak + ve Trend</td>
<td>Weak + ve Trend</td>
<td>Very Weak + ve Trend</td>
<td>+ ve Trend</td>
<td></td>
</tr>
<tr>
<td>Nov 2018</td>
<td>Weak - ve Trend</td>
<td>Weak - ve Trend</td>
<td>+ ve Trend</td>
<td>+ ve Trend</td>
<td>Very Weak - ve Trend</td>
<td>- ve Trend</td>
<td></td>
</tr>
<tr>
<td>Dec 2018</td>
<td>Weak - ve Trend</td>
<td>Weak - ve Trend</td>
<td>Weak - ve Trend</td>
<td>Weak - ve Trend</td>
<td>Very Weak - ve Trend</td>
<td>- ve Trend</td>
<td></td>
</tr>
<tr>
<td>Jan 2019</td>
<td>Weak + ve Trend</td>
<td>Weak - ve Trend</td>
<td>No Trend</td>
<td>Weak - ve Trend</td>
<td>Weak + ve Trend</td>
<td>+ ve Trend</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Cumulative Plot Test</th>
<th>Eye Ball Test</th>
<th>Karl Pearson (i-1)</th>
<th>Karl Pearson (i-2)</th>
<th>Serial Correlation (i) vs (i-1)</th>
<th>Serial Correlation (i-1) vs (i-2)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 2018</td>
<td>Weak + ve Trend</td>
<td>Weak - ve Trend</td>
<td>Weak - ve Trend</td>
<td>Weak - ve Trend</td>
<td>- ve Trend</td>
<td>- ve Trend</td>
<td></td>
</tr>
<tr>
<td>Sep 2018</td>
<td>- ve Trend</td>
<td>Weak - ve Trend</td>
<td>Weak - ve Trend</td>
<td>No Trend</td>
<td>weak - ve Trend</td>
<td>- ve Trend</td>
<td></td>
</tr>
<tr>
<td>Oct 2018</td>
<td>Weak - ve Trend</td>
<td>+ ve Trend</td>
<td>Weak - ve Trend</td>
<td>No Trend</td>
<td>weak - ve Trend</td>
<td>- ve Trend</td>
<td></td>
</tr>
<tr>
<td>Nov 2018</td>
<td>Weak - ve Trend</td>
<td>Weak - ve Trend</td>
<td>Weak - ve Trend</td>
<td>weak - ve Trend</td>
<td>- ve Trend</td>
<td>- ve Trend</td>
<td></td>
</tr>
<tr>
<td>Dec 2018</td>
<td>Weak + ve Trend</td>
<td>Weak - ve Trend</td>
<td>Weak - ve Trend</td>
<td>Weak + ve Trend</td>
<td>- ve Trend</td>
<td>- ve Trend</td>
<td></td>
</tr>
<tr>
<td>Jan 2019</td>
<td>No Trend</td>
<td>- ve Trend</td>
<td>- ve Trend</td>
<td>Weak + ve Trend</td>
<td>Weak + ve Trend</td>
<td>+ ve Trend</td>
<td></td>
</tr>
</tbody>
</table>
The above outcomes showing some kind of trend and in detail the reliability is showing positive trend and the availability is showing the negative trend. Hence it can be considered as the Non homogeneous poison process.\cite{8,9,10}

Hence the Power law process used for further analysis to find out the reliability and availability. The failure intensity function depends upon the cumulative time ‘t’ (not the local time between failures).

![Figure 2: Graphs showing power law process for six consecutive months](image)
The plasma arc force parameter of importance. U is the velocity term that is going being constant hence they can be ignored without much effect.

heart and density and thermal conductivity of the material removal rate, time of operation that is weld time and speed the key parameters such as heat dissipated, rate of material removal rate, time of operation that is weld time and speed.

WORK PIECE: The work piece here used is austenitic stainless steel alloy 304L of length 15cm length and 10cm width and various thickness. During the operation of welding the key parameters such as heat dissipated, rate of material removal rate, time of operation that is weld time and speed to be altered hence its a.

AVAILABILITY CALCULATIONS
\[
\alpha = \ln t - \{ \log(MCRF) / \beta \}; \quad R(t) = \exp(- (t/\alpha)\beta), \quad \text{MCRF} = (t/\alpha)\beta
\]

IV OPTIMIZATION
WORK PIECE: The work piece here used is austenitic stainless steel alloy 304L of length 15cm length and 10cm width and various thickness. During the operation of welding the key parameters such as heat dissipated, rate of material removal rate, time of operation that is weld time and speed to be altered hence its a.

- **Parameter**
- **Aug 2018**
- **Sep 2018**
- **Oct 2018**
- **Nov 2018**
- **Dec 2018**
- **Jan 2019**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.510</td>
<td>0.522</td>
<td>0.497</td>
<td>0.528</td>
<td>0.539</td>
<td>0.572</td>
</tr>
<tr>
<td>Log t</td>
<td>-0.2924</td>
<td>-0.2823</td>
<td>-0.3036</td>
<td>-0.297</td>
<td>0.2684</td>
<td>-0.2426</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.221</td>
<td>0.246</td>
<td>0.311</td>
<td>0.209</td>
<td>0.204</td>
<td>0.223</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>12</td>
<td>13.2</td>
<td>12.9</td>
<td>13.5</td>
<td>12.78</td>
<td>13.33</td>
</tr>
<tr>
<td>Log(MCRF)</td>
<td>0.5317</td>
<td>0.4459</td>
<td>0.3633</td>
<td>0.5079</td>
<td>0.5242</td>
<td>0.4955</td>
</tr>
<tr>
<td>R(t)</td>
<td>0.6080</td>
<td>0.6440</td>
<td>0.6954</td>
<td>0.6017</td>
<td>0.5920</td>
<td>0.6092</td>
</tr>
</tbody>
</table>

AVERABILITY CALCULATIONS
\[
\alpha = \ln t - \{ \log(MCRF) / \beta \}; \quad A(t) = \exp(- (t/\alpha)\beta), \quad \text{MCRF} = (t/\alpha)\beta
\]

III CALCULATIONS

RELIABILITY CALCULATIONS
\[
\alpha = \ln t - \{ \log(MCRF) / \beta \}; \quad R(t) = \exp(- (t/\alpha)\beta), \quad \text{MCRF} = (t/\alpha)\beta
\]

TFB Based

Table III: Availability calculations based on Time to repairs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.576</td>
<td>0.610</td>
<td>0.541</td>
<td>0.567</td>
<td>0.588</td>
<td>0.549</td>
</tr>
<tr>
<td>Log t</td>
<td>-0.2395</td>
<td>-0.2146</td>
<td>-0.2668</td>
<td>-0.2464</td>
<td>-0.2306</td>
<td>-0.2604</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.217</td>
<td>0.226</td>
<td>0.231</td>
<td>0.297</td>
<td>0.268</td>
<td>0.273</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>12.5</td>
<td>12.78</td>
<td>13.01</td>
<td>12.68</td>
<td>13.29</td>
<td>13.16</td>
</tr>
<tr>
<td>Log(MCRF)</td>
<td>0.5128</td>
<td>0.5028</td>
<td>0.4797</td>
<td>0.3973</td>
<td>0.4335</td>
<td>0.4200</td>
</tr>
<tr>
<td>A(t)</td>
<td>0.5988</td>
<td>0.6048</td>
<td>0.6189</td>
<td>0.6721</td>
<td>0.6482</td>
<td>0.6570</td>
</tr>
</tbody>
</table>

III CALCULATIONS

RELIABILITY CALCULATIONS
\[
\alpha = \ln t - \{ \log(MCRF) / \beta \}; \quad R(t) = \exp(- (t/\alpha)\beta), \quad \text{MCRF} = (t/\alpha)\beta
\]

IV OPTIMIZATION

The plasma arc force is derived as
\[
P_s(x,y) = \{(mu)^3/(4\pi^2)\} (r^2 - r^3)^2 + C_1^*0.5\sigma^2 exp(-3x^2/a_1^2-3y^2/b_1^2)
\]

This is been utilized for the condition velocity of weld greater than molten metal in weld area. Based on this the objective function can be defined as
\[
Z=213(r^2 - r^3)^2+21.978 exp(-3x^2/a_1^2-3y^2/b_1^2)
\]

The plasma arc force is derived as
\[
P_s(x,y) = \{(mu)^3/(4\pi^2)\} (r^2 - r^3)^2 + C_1^*0.5\sigma^2 exp(-3x^2/a_1^2-3y^2/b_1^2)
\]

This is been utilized for the condition velocity of weld greater than molten metal in weld area. Based on this the objective function can be defined as
\[
Z=213(r^2 - r^3)^2+21.978 exp(-3x^2/a_1^2-3y^2/b_1^2)
\]
After solving the above equations the optimized values obtained as follows.

\[r_2 = 3.17 \text{mm}, \quad r_1 = 4.532 \text{mm} \] and \(x, y \) values are 1.79, 1.023.

V RESULTS AND DISCUSSION:

The plasma arc welding machine reliability and availability were calculated over a period of time and then it is found that the reliability is in the moderate limits and the availability is in coordination with the reliability and finally it is evident that the machine performance is increasing and in addition to it the availability of the machine follows the same. Hence it is concluded that the machine is in its first phase of its life cycle from the bathtub curve. The below graphs shows the comparison of the reliability and availability of the machine with time.

Figure 3: Comparison of Reliability and Availability for the six consecutive months

In addition to the above verdicts in a microscopic observation it is observed that in the first half if the experiment the reliability is dominant to the availability and in the second half the availability is dominant to the reliability. But as a overall availability is increasing and the reliability is slightly varying it is because of fatigue and stress. More research is to be carried out in this area for the further development and efficient operation.

REFERENCES:

1. Mr. A. Suresh and Dr. G. Diwakar, 2018, “Analysis, Investigation and Testing of Adaptability of Plasma Arc Welding for Mild Steel Plates”, International Journal of Mechanical Engineering and Technology (IJMET), ISSN Print: 0976-6340 and ISSN Online: 0976-6359
3. Mr. A. Suresh and Dr. G. Diwakar, 2018, “Reliability Optimization Analysis and Improvement”, “International Journal of Creative Research Thoughts, 2018 ISSN: 2320-2882
4. Taha Abdullah, Mousa May, Investigation on the effect of different welding parameters on welding quality of 304L Stainless steel, Journal of pure and applied sciences, ISSN: 2521-9200
5. Kumar rahul anand, Dr Vijay mittal, Review of the parametric optimization of TIG welding, International research journal of engineering and technology, e-ISSN: 2395-0056
8. Nilesh Pancholi, Dr M G bhatt, “Performance reliability improvement by optimizing maintenance practices through failure analysis in process industry- A comprehensive literature review”, International journal of mechanical and civil engineering, ISSN:2278-1684

AUTHORS PROFILE

Mr. A. SURESHE completed B.Tech (Mechanical Engineering), M.Tech (Engineering Design) from JNTUH Hyderabad India. Currently pursuing PhD from K L Deemed to be University, Vaddeshwaram, Andhra Pradesh, India. ORCID ID: https://orcid.org/0000-0002-3324-2294. Scopus Author ID: 57205229114.

Dr. G. Diwakar, Professor of Mechanical Engineering, KL Deemed to be university Vaddeshwaram, Andhra Pradesh, India. ORCID ID: https://orcid.org/0000-0002-4468-9116. Scopus Author ID: 55383355700.