
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

5366

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8530088619/2019©BEIESP
DOI: 10.35940/ijeat.F8530.088619
Journal Website: www.ijeat.org

Abstract: Paper The advent of Android as a mobile OS has
revolutionized the way we perceive life today. It has permeated
now from handhelds to becoming an inclusive and persistently
increasing member of our day to day lives. We are increasingly
becoming dependent on technology in our everyday lives,
insomuch that it is impossible to envision the world without it.
Android is at the forefront of this revolution. It has practically
rendered the Personal computer useless and has shown the world
a new way of transacting on the go using our smartphones and
tablets. However, with all the facilities, there comes the shadow of
insecurity and data privacy compromise. This is an area which
requires deeper introspection and research because it is required
to ensure seamless and hassle-free operations in our day to day
activities. The current research tries to delve deep into the innards
of Android to come up with some plausible solutions to assuage
somewhat the wounds that thee intentional leaks of the operating
system can give. In this paper, in the successive sections, we
propose a framework which would help us in removing the
identified vulnerabilities that afflict Android, namely third-party
apps and vendor customized ones. We would also propose a set of
guidelines for improving the Permissions model. We call our
framework, “The ASBP Framework.” (App Sanitization and

Better Permissions).
.
Keywords:Android,ASBP,framework,Malicious apps,Permissi

ons,security

I. INTRODUCTION

 Mobile technologies have transformed every facet of life.
Google’s Android is the most well-known cell phone
Platform, running on 52.5% of all cell phones, and with more
than 10 billion applications downloaded from the Market.
Android takes an open-publish approach to application
dissemination, in which any application is installed on any
telephone. To help address security concerns, Android
ensures access to delicate resources, including the Internet,
GPS, and telephony with consents. At the point when an
application is introduced, the consents it solicits appear to the
client, who then chooses whether to continue with the
installation. No extra authorizations might be gained when an
application runs. While Android authorisations give a vital
level of security, more accessible permissions are given than

Revised Manuscript Received on October 30, 2019.

* Correspondence Author
 Akshay Bhardwaj*, Department of Computer Science, HP University,

Summerhill, Shimla 171005,India. Tel: +919418482826, e-mail:
akshay117@gmail.com
A J Singh, Department of Computer Science, HP University, Summerhill,
Shimla 171005,India. Tel: +919418484855, e-mail: aj.hpucs@gmail.com.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

should be expected. For instance, the Amazon shopping
application must get full Internet authorization, enabling the
application to send and get information from any webpage on
the Internet, not simply www.amazon.com. This authorization
permits applications to associate with neighbourhood
attachments on the telephone also, which prompted to an as of
late promoted security opening whereby any application with
Internet permission could get to definite framework sign on
HTC Android telephones.In this paper, in the successive
sections, we propose a framework which would help us in:
Removing the identified vulnerabilities that afflict Android,
namely third-party apps and vendor customized ones.
We would also propose a set of guidelines for improving the
Permissions model.
We call our framework, “The ASBP Framework.” (App

Sanitization and Better Permissions).

II. CURRENT SCENARIO

Dangerous permissions

These cover areas at which the program wants resources or
data which demand an individual's private info, or could
potentially impact the user has stored data or the operation of
different apps.Special permissions
There are two or three permissions that do not behave as
dangerous and normal permissions.
SYSTEM_ALERT_WINDOW along with
WRITE_SETTINGS are especially sensitive, so most
programs should not utilize them. If an app needs one of these
permissions, then it has to declare the permission from the
manifest, and ship an intention asking the consumer's
authorization.

Fig 2.1 Current permissions model

III. SET OF GUIDELINES FOR THE PERMISSION

MODEL IN ANDROID

After doing extensive and exhaustive research,
[1].[2],[3],[4],[5],[6],[7], we have concluded that Android
permission scheme/model right since its inception has been
undergoing transformations and is continuously changed
depending upon the user suggestions and the developer's
suggestions and the platform
owner’s business decisions.

Implementing ASBP: A Novel framework for
Sanitizing Android Apps.

Akshay Bhardwaj, A J Singh

mailto:akshay117@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.F8530.088619&domain=www.ijeat.org

0

Implementing ASBP: A novel framework for Sanitizing Android Apps.

5367

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8530088619/2019©BEIESP
DOI: 10.35940/ijeat.F8530.088619
Journal Website: www.ijeat.org

Since Android came into existence, we have studied that there
have been various kinds of changes in the type and taxonomy
of permissions which have been implemented with
subsequent revisions. However, the most important and
radical change came with the advent of Android 6.0
(Marshmallow). Earlier the users had to accept the
permissions all at install time, or the application would not
install. Marshmallow changed this by introducing a Runtime
based permissions model which allowed the users to choose
what permissions the applications that they installed on their
mobile devices had access to. This allowed users to have more
control over their choices to allow/deny certain permissions.
A study regarding this was done by us, which vindicated our
stand that Android required Granular permissions. In
Android after M permissions have been a welcome step
forward and bring a few controls to users. It is like a boxer
with a glass jaw, there is still a lot to be done, but it is a
trade-off between convenience/simplicity and privacy
controllers. These Controls are a win-win -- provide several
privacy controls, curb the most nefarious offenders; however,
at the same time, softly allow developers to gather more
aggregate analytics. The developers gain, the consumers gain
something Google gains that the maximum, Now you could
state it is sacrificing privacy, to increase security. However,
unlike IOS, it can be circumvented.From the preceding
paragraph, the gravity of the situation becomes quite
apparent. Therefore, we propose a set of guidelines for the
permission model of Android:
1. There will be no Permission Groups. Permissions shall be

Granted and Revoked individually.
2. INTERNET permission shall be labeled as Dangerous.
3. When an App is running in the background, it shall cease

to hold control over any resources that it may have access
to.

4. No Pending Intents should be allowed by the system.
5. Third party or user-defined permissions will not be treated

at par with the system defined permissions.
6. Each of the dangerous permissions can be and wherever

possible should be broken down into further fine-grained
ones.

7. In addition to the existing dangerous permissions in
Android classification, the following permissions would
also be included and labeled as dangerous:

android.permission.ACCESS_LOCATION_EXTRA_COM
MANDS
android.permission.ACCESS_NETWORK_STATE
android.permission.ACCESS_WIFI_STATE
android.permission.ACCESS_WIMAX_STATE
android.permission.BROADCAST_STICKY
android.permission.CHANGE_NETWORK_STATE
android.permission.EXPAND_STATUS_BAR
android.permission.FLASHLIGHT
android.permission.GET_ACCOUNTS
android.permission.GET_PACKAGE_SIZE
android.permission.GET_TASKS
android.permission.KILL_BACKGROUND_PROCESSES
android.permission.MODIFY_AUDIO_SETTINGS
android.permission.PERSISTENT_ACTIVITY
android.permission.READ_SYNC_SETTINGS
android.permission.READ_SYNC_STATS
android.permission.RECEIVE_BOOT_COMPLETED
android.permission.REORDER_TASKS

android.permission.RESTART_PACKAGES
android.permission.SET_TIME_ZONE
android.permission.SET_WALLPAPER
android.permission.SET_WALLPAPER_HINTS
android.permission.TRANSMIT_IR
android.permission.VIBRATE
android.permission.WAKE_LOCK
android.permission.WRITE_SETTINGS
android.permission.WRITE_SYNC_SETTINGS
android.permission.WRITE_USER_DICTIONARY
android.permission.BLUETOOTH
android.permission.BLUETOOTH_ADMIN
android.permission.CHANGE_WIFI_MULTICAST_STAT
E android.permission.CHANGE_WIFI_STATE
android.permission.CHANGE_WIMAX_STATE
android.permission.DISABLE_KEYGUARD
com.android.launcher.permission.INSTALL_SHORTCUT
android.permission.INTERNET
android.permission.NFC
android.permission.READ_INSTALL_SESSIONS
android.permission.READ_PROFILE
android.permission.READ_SOCIAL_STREAM
android.permission.READ_USER_DICTIONARY
com.android.alarm.permission.SET_ALARM
com.android.launcher.permission.UNINSTALL_SHORTCU
T android.permission.USE_FINGERPRINT
android.permission.WRITE_PROFILE
android.permission.WRITE_SOCIAL_STREAM
For our discussion permissions model does not only imply the
nomenclature and taxonomy of Permissions in Android but
also refers to any security aspect which stems from the misuse
of these permissions by malicious apps.These general
guidelines are proposed after an extensive study of literature
that we have done regarding the permissions model of
Android as is amply demonstrated in the previous papers. We
further propose that these new guidelines/framework would
have maximum impact on only dangerous permissions. This is
because although our theoretical framework is exhaustive, our
literature survey and our research, as demonstrated in the
preceding papers put on us a limitation. We shall only limit
ourselves to implementing a prototype application only for
INTERNET (because we deem it to be the strongest of the
candidates for malware attacks).

IV. LOGIC AND THOUGHT BEHIND PROPOSED

GUIDELINES

The following is the justification behind the salient points
of the Guidelines:
1. In case permission groups are to be retained for the sake of

user simplicity and reduction of complexity. Still, the
individual app permissions will be given to the specific
app that requests it.

2. The other permissions shall remain unaffected and will
have to be explicitly asked for. (The concept of permission
groups though was visualized as an effort to club similar
permissions into a single entity. Unfortunately, it has
opened up a new world for malware because when one
permission is granted to an application from a group, then
the other permissions from that group are implicitly
granted to the application)

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

5368

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8530088619/2019©BEIESP
DOI: 10.35940/ijeat.F8530.088619
Journal Website: www.ijeat.org

3. The INTERNET permission has been removed from the
list of dangerous permissions and is now normal
permission that does not require user intervention and is
granted by default. (possibly this is because Google works
on an Ad revenue-based model or concept).
4. For example, when an app goes into the background in

a cached state, it cannot operate outside of its sandbox.
5. A Pending Intent specifies an action which would

happen in the future. You pass a future intent to
another application and allow that application to
execute that Intent; as if it had the same permissions as
your application, whether or not your application
exists when the Intent is eventually alled upon. This is
a very dangerous situation as the permissions
requested through the Intent will remain available in
the system even after the original app is finished.

6. Apps can define their custom permissions and request
custom permissions from other apps by
defining <uses-permission> elements. Android treats
these just like system permissions, which is dangerous
as there is no way of finding out if the app developer’s

intentions are true or not.
7. If any apps are found indulging in nefarious activity by

misusing the permissions model, then they should be
broken down into finer grains and could alternatively
be used to provide fake information to the malapp. We
propose that all the permissions outlined above can be
used to provide for fine-grained versions. This is very
much feasible and possible. All it would require would
be the creation of a layer/library that would hold the
definitions and actions corresponding to the new
permissions which would not replace the platform
ones but would instead provide a pathway through
which apps would interact with the platform ones.

8. As an example, without the prompting, ALL programs
can read your Google-registered Gmail address,
nearby Wi-Fi networks, currently connected Wi-Fi
network, find what other reports have been installed on
your apparatus, launching at boot, change your
wallpaper/timezone, and more.Even after Android M's
new permissions with ALL locked down and there are
no alarms to the consumer. This is a big problem.

V. A VIEW AT GRANULARITY OF PERMISSIONS

We thought to classify permissions based on the kind of
resource that was either to be protected or accessed.
Category 1: Outside Access Our category contains those
Android permissions that enable access, for example, Web
access, sending and receiving text messages, and writing and
reading external storage. The particular resource naturally
parameterizes all these permissions. By way of example,
Internet access involves specifying an Internet domain, text
messages are sent to a phone number in a certain field code,
and card access calls for specifying a directory or file name.
Thus, there are two natural methods of fine-grained variations
with this category: having a whitelist of allowed resources
(domains, domain name, directories, etc.), or even a blacklist
of forbidden resources. We could even combine both the
methods to achieve an optimum solution. Within our
framework, we have selected to focus on access to the
Internet, which is pervasive across applications and maybe
especially dangerous. We developed a Fine-grained, Black

Listing permission InternetURL(Id), which allows network
links just to domain d and its Subdomains. Notice that this
consent does not remove the requirement target domain d to
some degree. However, it will help ensure that app
vulnerabilities cannot be tapped to contact it and malicious
websites.
Category 2: User Data Our second category contains those
Android permissions that access structured user data, such as
an individual's calendar, contact list, and accounts
information. For these permissions, we can present variations
that leverage the structure to provide access to a subset of the
info.
Category 3: Sensors Our category contains those
permissions that protect access to sensors on the phone,
including the camera, GPS receiver, and microphone.
Category 4: Settings Our fourth category contains those
permissions that provide access to settings and state
information on your telephone. An average of each
permission that is such provides access to browse or update
unrelated bits of advice. As we see from the preceding
discussion, it is quite easy to introduce finer-grained variants
of permissions into the sandbox framework that we are
proposing. This, however, is one aspect of our framework.
The other aspect would include instrumenting the application
so that it can make use of the fine graining of permissions that
we have just described. Specifying such permissions model
would be an exhausting task; hence, for the sake of our
discussion, we include only the prominent ones. INTERNET
as inferred from the previous paragraph. As is very much
understandable from the preceding discussion, we need to
condense the permissions into Granular ones, which can be
done as follows: By examining the software within our
1100-application sample we identified 11 permissions that
may bring about the disclosure of 12 kinds of sensitive
information: location, phone_state (granting access to call
number & distinctive device ID information types as well as
call state),contacts, user account information, camera, mic ,
browser history & Folders, logs, SMS messages, calendar,
along with subscribed feeds. We quantified the prevalence by
which applications required each permission by parsing the
applications' manifests with the publicly available Android
APKtool. We find that 605 applications (55 percent) require
the use of one of the resources and access to the Internet,
leading to the potential for undesirable disclosure. This
essentially means we can have 11 different kinds of
permissions which are holding the key to 12 sensitive
tools.This is a pointer as to where we should focus next. We
shall limit our focus to some of the prevalent malicious
activities that could be done by malware. These examples
include for our purpose:

1. Sending SMS's without the user knowing about
them

2. Accessing potentially unwanted URLs either for

advertising or for information leakage.
At the very root of this framework lies the idea that malware
generally infects a system through various entry points such as
resources, contexts, intents, etc. So, a one size fits all solution
would be very tough to develop.

https://developer.android.com/guide/topics/manifest/uses-permission-element.html

0

Implementing ASBP: A novel framework for Sanitizing Android Apps.

5369

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8530088619/2019©BEIESP
DOI: 10.35940/ijeat.F8530.088619
Journal Website: www.ijeat.org

 However, the focal point that we have come to know from
preceding and extensive discussion are that Permissions are
the basic area which opens access to the system for malware
and benign applications alike. This means that if we can
somehow implement fine graining into these permissions, we
can achieve great success in alleviating this security problem
encountered by Android. To this extent, we propose that the
coarse-grained permissions model can be modified by
including finer graining of permissions through code.Thus,
from the preceding discussion, we propose a framework
which necessarily is a Two-Tier architecture in which we
introduce a middle layer between the application that is to be
installed or tested and the operating system, i.e., Android.

VI. THE ASBP (APP SANITIZATION AND BETTER

PERMISSIONS) FRAMEWORK

1. The framework essentially will consist of two parts:
a) The middle layer which will hold the policy logic for

granular permissions (from now on also referred to as the
Granular Access Layer (GAL)).

b) The instrumentation layer where the actual part of
installing the policy logic will be carried out by using
reverse engineering. (from now on referred to as the
Instrumentation Technique (IT)).

2. It is required to find out which permissions can be targeted
for granularity and accordingly dealt with. For our
purpose of demonstration, we shall be focusing on only
INTERNET and the send and receive SMS permissions.

3. The application that is to be tested will not be allowed to
play with any area of the operating system.

4. The application will see all interaction with the OS as direct
interaction with the native resources through inbuilt code.

5. In reality, all communication between the Application and
OS would be carried out through the wrapper, which is
GAL.

6. Essentially the framework would act as a self-contained
sandbox where the application would be checked and
thoroughly vetted for any nefarious intentions.

Operating Assumptions For our discussion, our model
would assume that any app which is installed on the Play
Store, has been vetted fully and therefore we would take a
similar app from a third-party source and then compare that
app with its corresponding app in the play store. Then the
third-party app would be put into the sandbox/framework and
then vetted for any malicious code that has been put into it by
nefarious developers. So, necessarily, the Play store app
would serve as a reference through which we can infer the
policy logic for vetting.In addition to detection of malware,
this design would also enable us to implement granular
permissions on the app in question, and we would be
successful in ascertaining whether the Play Store App needs
refinement or not. Essentially our framework allows us to
achieve two different objectives:
We would get a malware-free application that we can blindly
install on the device.
 We can further customize the application so that we can
include granularity of permissions in it also.

Figure 6.2 GAL architecture

Figure 6.3 IT architecture

As is quite clear from these figures GAL is responsible for
providing granular access to sensitive resources whereas IT
allows us to customize the original apk which can make use of
GAL to provide restricted access to sensitive resources.

VII. IMPLEMENTATION WITH ANALYSIS AND RESULTS

Moving further from the preceding section, in this paper, the
implementation of the framework is done in two steps:

1. Using ASBP to identify android vulnerabilities
and removing them.
For this purpose, we will focus on apps that contain
malicious code which is used for sending unsolicited
messages. These represent one kind of vulnerability
which we shall focus on removing.

2. Using ASBP to demonstrate fine graining of
permissions with user involvement.

For this purpose, we have created a functional android
browser application which serves as a prototype for enforcing
fine-grained policies. We will focus on the INTERNET
permission, which is pervasive permission that is
automatically granted to apps. This will further strengthen our
guidelines that it needs to be labelled as dangerous. By using
fine graining, we constrain our browser app to restrict access
to particular user chosen sites, so even while the app has
INTERNET access, we have fine-grained it through the code
in ASBP.As a further practical standpoint, a wrapper (GAL)
that will offer permission controlling interface will be
introduced into the APK installer file for the apps.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

5370

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8530088619/2019©BEIESP
DOI: 10.35940/ijeat.F8530.088619
Journal Website: www.ijeat.org

We will improve the wrapper that will offer a permission
management interface and a patcher (part of IT) that is being
added into the APK installer file. Through this, we will
provide a little private area to apps taken from untrusted
sources. They will not allow the app to play with the rest of the
device that stores your confidential information. Android
devices can contact the internet, make online bank
transmissions, handle social networks, etc. Using
Androgaurd, we can find the risk of the apk file and
similarities of apk file and patched apk file. We will analyze
the security level of android application before and after
patching.

A. System Overview

First, we present a complete overview of ASBP. The
step-by-step process is as follows:
1. We take an application from a third party store or Play

store.
2. In case it is from a third party store, we will check for

vulnerabilities using Androguard.
3. If both files match, then there are no vulnerabilities. We can

proceed to step 7.
4. In case there are vulnerabilities we shall check for them by

using our IT tool.
5. We shall specifically look for unauthorized SMS sending

code and for checking unfettered internet access.
6. After the process is complete, we can again check using

Androguard whether there still exist some vulnerabilities.
7. We can check for the possibility of granularity.
8. If the possibility exists, provide for granular mechanism.
9. Stop.
As is clear from the previously outlined steps that we will
accomplish both our objectives. We shall be able to identify
vulnerabilities, and we shall be able to improve the
permissions model too.
Instrumentation Technique: The first part of the design
requires creating an instrumentation tool which can
manipulate the APK and insert the files that will intercept the
application’s behavior at run-time. A step-by-step process of
achieving this is outlined below.
1. Take our prototype application or any real-world apk file.
2. Disassemble the APK using apktool into assembly code

.smali files.
3. Also, check the manifest file of the apk.
4. The manifest will show us the permissions.
5. The smali code now has to be checked for discrepancies.
6. Inject our custom code which will override the calls to the

inbuilt classes with calls to our defined classes.
7. Reassemble the APK with apktool.
8. Sign APK with jarsigner using a key provided by ourselves

so it will be accepted at load time.
9. Install signed APK onto the device, using adb tool.
Instead of using steps 7,8,9, we can accomplish all the code by
using a patcher that we have developed for our prototype in a
single step to save time.
Run-time Flow
The code as classes which will be utilized for guiding into the
broken down APK is the key factor behind catching and
effectively taking care of undesired calls at run-time. To deal
with this, two documents will be embedded which contain the
code for IT and GAL. The IT class is the main point of contact
when the startActivity is called and handles the extraction of
data to go to the GAL. The IT should wait until GAL has

evaluated the data and given its report. On the off chance that
the activity is non malicious, IT should continue the
application, and if the activity beneficiary has been
blacklisted, it should obstruct the activity. The GAL is called
from IT either because IT has been required the first run
through and has Policy design information to send to GAL, or
it requires the GAL to assess conceivably unsafe information.
If Policy design information is passed in, the GAL should
store the data in a blacklist that it can utilize later for
checking. However, if IT is requesting that the GAL check
approach, it should utilize the blacklist information to decide
the danger level, alongside examining whether the activity is
conceivably a URL or SMS. The Policy document is not
embedded during APK instrumentation. Rather, it will be
made by IT during run-time. The IT will initially check if the
Policy design record as of now exists, on the off chance that it
doesn't, it will make one, but if it does exist, it will attach new
data to it. The Policy setup will be utilized to store blacklisted
numbers that can be recovered each time the application runs.
The organization of the policy document will be
straightforward with the goal that it might be perused rapidly
from the IT on start-up. After both the IT and GAL have
worked, each class will at that point be dismantled utilizing
APKTool so that the. smali variant of each record might be
embedded and recompiled with the adjusted APK.
Now we shall further proceed with the help of following use
cases which are discussed in the next section.

Use Case 1: Identifying Android Vulnerabilities and
Rectification with ASBP
A.Design Requirements We defined the following set of
requirements based upon our findings from the literature
review.

 Modified applications that do not violate policies
should function as expected.

 Instrumentation of the application should rely purely
on having access to the APK, and the source code
would primarily be unavailable.

B. Policies
In order to evaluate our system, a set of policies must be
outlined, which will be used to ensure our system correctly
intercepts the desired activities. The following policy has
been chosen as it addresses operations that are commonly
used without permission by malware.
 Prevent applications from sending SMS messages to

unauthorized numbers.
C. Design and Implementation Decisions
The following key design and implementation decisions were
made in order to satisfy the design requirements.
 Hooking/Inserting Methods at Run-time: The most
effective approach appears to be an actual modification of the
application before it is installed on the device. As stated in the
requirements deploying new firmware onto the Android
device is not a desirable option. Our design is based upon
modifying the code of the application, specifically in
wrapping the methods by overriding which we presume can
be the entry location for malicious behavior. This design had
its origins in the observation that many methods we were
thinking of intercepting made calls to the same class.

0

Implementing ASBP: A novel framework for Sanitizing Android Apps.

5371

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8530088619/2019©BEIESP
DOI: 10.35940/ijeat.F8530.088619
Journal Website: www.ijeat.org

This involved the breakdown and disassembly of the APK,
inserting the wrapper class, and changing class paths where
appropriate to direct the actual class to the modified custom
class, before returning to the normal execution of the task.
With this approach, we change the target to point to the
customized class. Our class contains custom policy check
methods which are specified by the user.
This is a simpler approach than others because our bytecode
modification does not make changes to existing code classes
instead provides a workaround hence does not take anything
away from the original.
D. Actual Experiment
The choice of a dataset is important because it reflects
real-world applications. Choosing a poor dataset may yield to
better results (for instance if the code within applications is
always small) but nonuseful results since they are
non-applicable on most real-world applications. We apply the
whole experimental protocol on a set of 50 Android
applications randomly selected among the top 50000
applications from the Android market. They span various
domains such as finance, games, communications,
multimedia, system, or news.
These apps have been downloaded from third-party stores
like AppBrain, SlideMe, and ApkPure.
Out of the dataset mentioned above, we chose to focus on
five main apps, namely calendar, notes, birthday free,
ACR, and contacts, because of two main reasons:

1. They are mostly prebuilt into every phone so are
susceptible to vendor customized code.

2. They are also most prevalent on third-party stores as
per our requirement.

 The results so obtained are explained in the concluding
section of this paper.
Use Case 2: Granular Permissions with ASBP

A. Design Requirements

 Users of the application should be conferred with on
decisions of whether to permit or deny methods intercepted by
policies.
 The design should make no assumptions about the user’s

technical knowledge other than the fact that they can
download and install Android applications. The requirement
stems from the fact that users of all backgrounds own and
operate Android devices. It, therefore, is potentially isolating
to user groups if they are assumed to have high technical
knowledge.

B. Policies

 Restricting the application from making connections via a
web browser. A user should be made aware when an
application is attempting connections to a particular domain
and should be given the option to permit or deny a URL.

C. Design and Implementation Decisions

 User Interface: One of the design requirements outlines that
there should be no assumptions made about the user’s

technical knowledge and given that disassembling and
reassembling applications recruits the help of apktool,
keytool and jarsigner it seems sensible to implement a user
interface to complement the hooking methods.
 Policy Configuration File: To allow fine-grained policies,
it is ideal to give users a choice about an URL whether they
trust the recipient or not. We store the policy information

within a file accessible only to the modified application. To
achieve this, the IT will read from the Policy configuration
file when first started or create a Policy configuration file if
one does not already exist.

D. Run Time Flow

1. The IT will come into action when an “original” class calls

the startActivity method.
2. If it is the first time, the IT has been called it should first
read in the Policy configuration file, so that it may extract the
blacklisted defined by the user.
3. The IT extracts information about the activity intercepted
and pass the activity data over to GAL.
4. The GAL checks the activity data passed in.
5. The activity will then be passed into a policy specific
method, where the data is inspected minutely.
6. GAL will compare the received information with the
created blacklist.
7. After the GAL has performed its checks, it will return a
policy report to the IT.
8. The IT ses the information from the GAL.If there are no
threats found normal operation resumes.
9. If the GAL had returned information indicating the URL
has already been blacklisted, application is resumed after
blocking the malicious activity.
10. If the URL is unknown, it is assumed ASBP could not
find any pre-existing url’s that matched the Policy
configuration file.
11. If the user does choose to blacklist the URL from step 6,
the GAL is notified of the changes, and the user preferences
are persistently stored.

E. Actual Experiment

To explain granular permissions,we have developed a test app
named browser wherein the flow of events outlined in the
preceding paragraphs takes place. This prototype tester app
assumes that the app for granularization is free from any
malicious code and just needs a little fine-tuning in order to
increase its security.
The results so obtained are explained in the concluding
section of this paper.

Results of ASBP Malapp Detection and Rectification

Malicious
Apk

Fuzzy
Risk
Value
(%)

Similarity
(%) with
Original
Apk

Difference
(%)
between
Original &
Malicious
Apk

iCalendar 92 99.98 0.022
Notes 92.4 99.965 0.035
Birthday
Free

91.6 99.948 0.052

ACR 88.45 99.946 0.054
Contacts 90.23 99.925 0.075

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

5372

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8530088619/2019©BEIESP
DOI: 10.35940/ijeat.F8530.088619
Journal Website: www.ijeat.org

Fig 7.1 Fuzzy Risk Values

Fig 7.2 Similarity With Original APK

Fig 7.3 Difference between original and Malicious apk

Patched Malicious
Apk

Similarity (%)
with Original
Apk

Difference After
Patching (%)

iCalendar_patched 100 0.0
Notes_ patched 100 0.0
Birthday Free_
patched

100 0.0

ACR_ patched 100 0.0
Contacts_ patched 100 0.0

Fig 7.4 After ASBP Difference reduced to zero

Results of ASBP Granular Permissions

Company

Device

Version

Build #

Memory

Samsung Galaxy On7 5.1.1

[lollipop]

LMY47XG600F

YXXUIAPD5

3gb

Sony Xperia

Tipo Dual

6.0.4

[Ice-cream Sandwitch]

11.0.A.6.8 3gb

Lenovo A369i 6.2.2

[jellybean]

ROW_S111_140522

3gb

0

Implementing ASBP: A novel framework for Sanitizing Android Apps.

5373

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8530088619/2019©BEIESP
DOI: 10.35940/ijeat.F8530.088619
Journal Website: www.ijeat.org

Lenovo K3 Note 5.1.1

[Lollipop]

VIBEUI_V2.5_1512_

5.495.1_ST_K50_T5

2gb

Samsung Galaxy J1Duos 6.6.4

[kitkat]

KTU84P.J100HD

DU0APB4

2gb

Sony Xperia SL 6.0.4

[Ice-cream sandwitch]

6.1.A.2.45 2gb

Motorola Moto G1 5.0.2

[lollipop]

LXB22.46-28 2gb

Fig 7.5 Experimental setup for granular permissions

We tested that policies were enforced correctly against
misbehaving or malicious applications. This functional
testing was implemented by creating our test application.
Web Browser Policy Enforcement: Our policy enforcement
testing mechanism will test the web browser activity. The
testing performed will be
ASBP will be testing intents to check whether a valid URL is
included in the intent information.

An application has been created of which the user will
automatically be taken to a certain website when a button is
clicked, which ASBP should intercept. The application will
be installed fresh into the device with a dataset of around 60
URLs.
Web Browser Policy Enforcement Results. The resulting
actions from ASBP can be seen in the following figures:

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

5374

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8530088619/2019©BEIESP
DOI: 10.35940/ijeat.F8530.088619
Journal Website: www.ijeat.org

 Fig. 7.6 Before and After ASBP Granularity Introduction

VIII. CONCLUSION

We aim to fix the majority of challenges that Android
encounters by providing a simple and effective technology
tool. Our Most Important contributions are that: Where
policies ensuring security and protecting privacy can be
enforced, we have built a method to repackage arbitrary APKs
which could be malicious.We provide a means of protecting
users from the software without making any adjustments to
the underlying Android architecture. This makes ASBP a
desirable solution.ASBP can be a robust technology that was
tested on many versions of Android. ASBP has low overhead
and, unlike other approaches, is mobile over different OS
versions.

REFERENCES

1. Bartel, A., Klein, J., Monperrus, M. and Le Traon, Y. (2014). Static
Analysis for Extracting Permission Checks of a Large Scale Framework:
The Challenges and Solutions for Analyzing Android. IEEE Transactions
on Software Engineering, 40(6), pp.617-632.

2. Li, W., Jiang, G.,(2015).Detecting Malware for Android Platform: An
SVM based approach. 2015 IEEE 2nd International Conference on Cyber
Security and Cloud Computing.

3. Idrees, F., Muttukrishnan, R. (2014).Investigating the Android Intents and
Permissions for Malware detection. 978-1-4799-5041-6/14/$31.00
©2014 IEEE.

4. Zhou, Y., Jiang, X,.(2012). Dissecting Android Malware:
Characterization and Evolution,2012 IEEE Symposium on Security and
Privacy

5. Fan, Y. and Xu, N. (2015). The Analysis of Android Malware
Behaviors. International Journal of Security and Its Applications, 9(3),
pp.335-346.

6. Tchakounte, F. (2014). Permission-based Malware Detection Mechanisms
on Android: Analysis and Perspectives. Journal of Computer Science and
Software Application. 1. 63-77.

7. Enck, W., Ongtang, M. and McDaniel, P. (2009). Understanding Android
Security. IEEE Security & Privacy Magazine, 7(1), pp.50-57.

AUTHORS PROFILE

Er. Akshay Bhardwaj, is an Asstt Prof. at UIIT
Deptt. In Himachal Pradesh University Shimla.He is
working here since 2004.He is pursuing his PhD. in
computer science from HPU after completing his
BTech and MTech in Information Technology. His
areas of interests are Distributed systems (Networks),

Operating systems,Mobile security and forensics.. He is on the academic
bodies of many universities. He can be reached at akshay117@gmail.com
 and Mobile: 09418482826.

Dr. A. J. Singh, is a Professor in the Department of
Computer Science in Himachal Pradesh University
Shimla. He has been in this Department since 1992. He
has obtained his Bachelor of Engineering degree in
Computer Technology from National Institute of
Technology (MANIT) Bhopal, Master of Science in

Distributed Information Systems from University of
East London (UK) under British Government ODASS Scholarship and Ph.
D. degree Himachal Pradesh University Shimla. He worked on deputation to
Royal Government of Bhutan (Education Division) under Colombo Plan for
three years. He has published more than 50 research papers, supervised six
Ph. D. students, 9 students doing Phd under his supervision and guided many
M. Tech. Dissertations. His areas of interests are Distributed systems
(Networks and DBMS), and ICT for Development. He is on the academic
bodies of many universities. He can be reached at
aj_singh_69@yahoo.co.uk and Mobile: 09418484855.

