
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August 2019

1724

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8427088619/2019©BEIESP
DOI: 10.35940/ijeat.F8427.088619
Journal Website: www.ijeat.org

Abstract: Processor caches have fixed line size. A processor

cache defined by tuple (C, k, L) where C is the capacity, k
associativity and L line size has fixed values for the parameters.
Algorithms to have variable processor cache line size are proposed
in literature. This paper proposes algorithm to have variable
cache line size based on the miss count for any application. The
line size is varied by increasing or decreasing line size based on the
miss count for any time interval. The algorithm can be used in
running any application. The SPEC2000 benchmarks are used
for simulating the proposed algorithm for cache with one level.
The average memory access time is chosen as performance
parameter. A performance improvement of 12% is observed with
energy saving of 18% for chosen parameters.

Keywords: Average Memory Access Time, Cache line size,
Energy, Set associative cache

I. INTRODUCTION

The central processing unit is the heart of the computer. The
processor cache improves the program execution time by
providing faster data and instruction access. The tuple (C, k,
L) denotes a processor cache where C is the capacity; k is the
associativity and L the line size. Usually all the three
parameters are fixed at processor design time. Three types of
processor caches are defined namely direct mapped, set
associative and fully associative based on line placement. A
line is placed in fixed place in direct mapped cache. It can
occupy any of the k possible locations in k-way set associative
cache. It can occupy any place in fully associative cache of n
blocks. The cache has sets. The direct mapped cache and
k-way set associative cache has S sets. The fully associative
cache has one set. Any address is mapped to a mod S set
number with a div S tag value in direct mapped and set
associative cache. An address with data is placed in fully
associative cache of n blocks in any vacant block. If all the
ways of mapped set in set associative cache or blocks in fully
associative cache are filled a replacement algorithm is used to
place the incoming line. Usually the least recently used (LRU)
algorithm is used for this. The line size L is the amount of data
fetched from memory to the cache.
Modern processors have multilevel caches. Caches can be
inclusive or exclusive or two type [2, 8].

Revised Manuscript Received on August 30, 2019.

* Correspondence Author
S Subha*, Department of IT and Engineering, SITE, Vellore Institute of

Technology, Vellore, T.Nadu, India

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

In exclusive cache a line is present in one cache level. In
inclusive cache a line at level i is present in level i and higher
cache levels. In two type data cache, a line is treated as
inclusive or exclusive based on access pattern [8].
Algorithms to have variable cache line size are presented in
literature. In the work [3] an algorithm to vary line size by
factor of two based on miss ratios is proposed by the authors.
The authors found that the miss rate can be improved in this
method. A method to have variable cache line size by
inspecting the program behavior was proposed in [7]. The
performance improved by 78% with the model for the chosen
program segment. The cache line size is not necessarily
power of two in this mode. However the cache is treated a s
array with defined bounds for various variables in the
program segment. The works [5, 6] proposes variable block
size for loops and matrix multiplication.
This paper proposes variable cache line size where the line
size is multiple of default line size. The lines are in set
associative cache. The proposed algorithm starts with default
line size. When the misses exceed threshold value, the line
size is incremented by one. The existing lines are invalidated
and the program continues with new line size. For calculating
the set number and the tag value, the default line size is taken.
However based on the current line size, the line is fetched
from main memory, the status of cache ways is updated to
indicate the validity of the cache way. If the line size cannot
accommodate the lines in a set, the line size is decremented,
the ways reinitialized and the program continues. The
proposed model was simulated on cache system with one
cache level with SPEC2000 benchmarks using Simple scalar
Toolkit. The average memory access time (AMAT) is used
for performance measurement. The proposed model is
compared with set associative cache of same size. The
performance improved by 12% for the simulated cache. An
improvement in hits was observed. An improvement in energy
savings of 18% was observed from the simulation.
The organization of the paper is as follows. Motivation is in
Section 2, proposed model in section 3. A mathematical
model is derived in section 4, simulations in section 5
followed by conclusion in section 6. The paper concludes
with references.

II. MOTIVATION

Consider level one cache. Let it be 4-way set associative
cache of 1024 sets. Let the cache line size be 32 bytes. Denote
S = 1024. Consider the SPEC2000 benchmarks. These are
run on this cache with the following placement/replacement
policy.

A Variable Processor Cache Line Size
Architecture

S Subha

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.F8427.088619&domain=www.ijeat.org

A Variable Processor Cache Line Size Architecture

1725

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8427088619/2019©BEIESP
DOI: 10.35940/ijeat.F8427.088619
Journal Website: www.ijeat.org

1. Start
2. Let miss = 0 hits = 0 premises = 0
3. Right shift by five bits the address for block size
4. Calculate the set number = a % 1024 and tag number = a div

1024
5. If line is present in set number increment hits, line is

accessed update the LRU counter and stop
6. Fetch the line of linesize from main memory to the LRU of

the set number, access the line, update LRU counter,
increment the miss and stop. If the line size cannot be
accommodated in the set number go to step 12

7. If miss – premises > 200 do steps 8-13
8. Invalidate the entire cache entries.
9. Let premises = miss
10. Increment linesize
11. Fetch the linesize data to the setnumber if enough space

is available in the set if possible else do step 12.
12. Decrement the linesize, invalidate the entries, go to step

11
13. Repeat the steps 3-11 till end of data
14. Stop
The above algorithm increments the waysize if the number of
misses exceeds two hundred, cleans the cache entries and
fetches data with new waysize. In case the new waysize
exceeds the set capacity to accommodate new lines, the
waysize is decremented and the procedure is repeated. The
setnumber and tagnumber are calculated using the initial
cache parameters. Simulations were done with SPEC2000
benchmars. The baseline is 4-way set associative cache of
32B linesize. The results are shown in Table 1

Table-I: AMAT Comparison

name AMAT_p(cycles) AMAT_t(cycles)

256.bzip2 13.69521937 13.77376461

181.mcf 6.90136226 7.979818365

197.parser 5.386246648 8.089264248

300.twolf 6.68712608 7.551074673

255.vortex 4.592063756 5.142038851

175.vpr 5.249314756 5.946893559

 AVERAGE 7.085222144 8.080475718

As seen from Table1 the AMAT improved by 12.32%. This
is the motivation of the paper.

III. PROPOSED MODEL

Consider level one processor cache. Let it be w-way set
associative cache with S sets and line size L. Initially the line
size is equal to one way. The following algorithm places line
in the cache with varying line size based on the miss rate.
Algorithm Variable Line Size: Given cache with S sets, line
size L, for w-way set associative cache, the algorithm adjusts
the line size based on miss rate
1. Start
2. Let miss = 0 hits = 0 prev_miss = 0 linesize = L
3. Right shift by log linesize bits the address for block size
4. Calculate the setnumber = a % S and tagnumber = a div S

5. If line of size linesize is present in setnumber increment
hits, access the line update the LRU counter and stop

6. Fetch the line of linesize bytes from main memory to the
LRU of the setnumber, access the line, update LRU
counter, increment the miss and stop. If the linesize cannot
be accommodated in the setnumber go to step 12

7. If miss – prev_miss > 200 do steps 8-13
8. Invalidate the entire cache entries.
9. Let prev_miss = miss
10. Increment linesize by one
11. Fetch the linesize data to the setnumber if enough space

is available in the set if possible, increment miss, update
LRU, access the line else do step 12.

12. Decrement the linesize, invalidate the cache entries, go
to step 11

13. Repeat the steps 3-11 till end of data
14. Stop
The algorithm varies the linesize based on miss count. The
cache entries are invalidated at each change of linesize value.
The algorithm runs for the entire trace. Each access probes for
match. If hit, increment the hit counter, access the line, update
LRU entry for the line of linesize bytes. Else, fetch line of
linesize bytes to the LRU entry of the mapped set. If the line
cannot be placed due to lack of space, the linesize is
decremented and the process repeated after invalidating the
cache entries. If the line can be placed, the miss count is
incremented with book keeping of LRU counter. The line size
is incremented when the miss count exceeds two hundred
from previous linesize change. The number of sets is assumed
to be constant for address mapping. The algorithm has the
linesize varying from one way to w ways. The proposed
model assumes that critical line first is used for line access.
The proposed model has line size as m*default line size, m>=
1. The line size need not be power of two. It differs from [7]
in that the linesize is multiple of cache ways. There is no need
for bound registers to be maintained.
The proposed model requires register to hold current linesize.
This is shown in Fig.1

Fig. 1. Proposed architecture

IV. MATHEMATICAL ANALYSIS OF PROPOSED

MODEL

Consider w-way set associative cache with line size L and S

sets. Let propC

 be proposed model . Let conventional set

associative cache be tradC .

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August 2019

1726

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8427088619/2019©BEIESP
DOI: 10.35940/ijeat.F8427.088619
Journal Website: www.ijeat.org

Let there be R references. Consider one level cache system.

Let there be 1h hits in tradC model. Let the L1 access time

be 1t cycles and miss penalty be m cycles. The tradC model

AMAT is given by

 mhRth
R

CAMAT trad 111

1

 (1)

For the proposed model let there be 1H hits in level one

cache and miss penalty be M. Let the cache be initialized as
per the algorithm variable_line_size cinit times. Let it take

initt time to initialize the cache. The AMAT of the proposed

system is given by

 inittcinitMHRtH
R

*
1

111

 (2)

A performance improvement is observed if

 mhRth
R 111

1

>= inittcinitMHRtH
R

*
1

111

(3)
Consider the power consumed in the proposed model. Let the

maximum number of enabled sets for trace in propC be

propsets and maximum number of enabled sets in tradC be

tradsets. Let it take E J/way energy for the cache operation.

The energy consumed in propC is

 propsetsEwCE prop *

(4)

For tradC the equation for energy consumed is given by

 tradsetsEwCE trad *

 (5)
An improvement in Energy consumption is seen if

propsetsEw* <= tradsetsEw* (6)

V. SIMULATION

Simplescalar Toolkit is used to simulate the proposed model
on SPEC2000 benchmarks. The simulation parameters are
shown in Table 2. The proposed is compared with set
associative cache with one cache level of same configuration.
The results of the simulation with AMAT comparison is
shown in Table 1. The proposed model is called proposed and
the base set associative cache is called traditional in this paper.
As seen from the Table 1 performance improvement of 12% is
observed. The miss count is presented in Table 3.

Table-II: Simulation Parameters

 S.No Parameter Value

1 1
L1 size of set
associaitve cache

1024
sets

2 2

L1 associativity of
set associative
cache 4

3 5 Default Line size
32
bytes

4 6

L1 access time in
proposed model

3
cycles

5 8

Miss penalty in
proposed model

50
cycles

6

Time to reinitialize
cache

3
cycles

 7 Energy per set 5J

Table-III: Miss count comparison
name prop trad
256.bzip2 106341 107124
181.mcf 329 420
197.parser 1647 3513
300.twolf 354 437
255.vortex 408 549
175.vpr 419 549

The maximum enabled sets for proposed and traditional
caches along with improvement in energy consumption is
given in Table 4.

Table-IV: Energy Comparison

name

enable
d
sets_p

enable
d sets_t E_prop

E_tra
d %E

256.bzip2 1024 512 20480 10240 -100

181.mcf 201 389 4020 7780
48.3290
5

197.parser 528 512 10560 10240 -3.125

300.twolf 179 394 3580 7880
54.5685
3

255.vorte
x 193 452 3860 9040

57.3008
8

175.vpr 199 426 3980 8520
53.2863
8

average

18.3933
1

As seen from Table4 there is average energy improvement of
18% for the chosen parameters.

VI. CONCLUSION

Processor caches defined by tuple (capacity, assocaiativity,
line size) have fixed values at design time. Processor cache
model with variable cache line size is proposed in this paper.
The proposed model starts with given line size of the cache.
The cache address mapping takes the default line size in
calculating the set number and tag number. The cache is level
one cache system. Based on the miss count the line size is
varied as multiple of default line size. If there is no enough
space in mapped cache set , the line size is decremented. The
cache lines are reinitilaized for each cache line size change.
The proposed algorithm is compared with set associative
cache of similar configuration. The simulation is done with
SPEC2000 benchmarks with Simplescalar Toolkit. A
performance improvement of 12% with energy saving of 18%
is observed for the chosen parameters.

L1 cache

Line size
regiser

L1 Cache

Line size register

A Variable Processor Cache Line Size Architecture

1727

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8427088619/2019©BEIESP
DOI: 10.35940/ijeat.F8427.088619
Journal Website: www.ijeat.org

ACKNOWLEDGMENT

The author thanks Santa Clara University, CA, USA for
providing SPEC2000 benchmarks and Simplescalar Toolkit.

REFERENCES

1. Alan Jay Smith, "Cache Memories", Computing Surveys, Vol.14,
No.3, September 1982, pp. 473-530

2. Alan Jay Smith, “Line (Block) Size Selection in CPU Cache

Memories”, IEEE Trans. Computers, Vol. C-36, No.9, September,
1987, pp. 1063 -1075.

3. Alexander.V.Veidenbaum, Weiyu Tang and Rajesh Gupta, “Adapting

Cache Line Size to Application Behaviour”, Proceedings of ICS, ’99
4. David A. Patterson, John L Hennessey: Computer System Architecture

: A Quantitative Approach, 3rd edition, Morgan Kaufmann Publishers
Inc., 2003, ch. 5

5. S. Subha and Weijia Shang, “Variable Block Size Architecture for

Matrix Multiplication”, Proceedings of Obcom 2006, pp. 187-191
6. S. Subha, “Variable Block Size Architecture for Loops”, Proceedings

of the Fifth International Conference on Information Technology: New
Generations , 2008, pp. 1144-1145

7. S. Subha, “Variable Block Size Architecture for Programs”,

Proceedings of ITNG 2009, pp.1640-1641
8. S. Subha, “A Two-Type Data Cache Model”. Proceedings of 2009

IEEE International Conference on Electro/Information Technology,
2009, pp. 476-481.

AUTHORS PROFILE

 S. Subha has done her Ph.D in computer Engineering in
processor caches from Santa Clara University, CA, USA.
Her research interests are in processor cache memories,
computer arithmetic. She has teaching experience of
seventeen years, software industry experience of six years.
She is presently working in Vellore Institute of
Technology, Vellore, India. She has successfully guided
/co-guided four research scholars in area of computer

architecture, parallel processing, cloud computing at VIT, Vellore. She has
authored/co-authored fifty journal papers in international journals, thirty
nine international conference publications. She has worked as reviewer of
international journals for past five years

http://dblp.uni-trier.de/db/conf/itng/itng2009.html#Subha09b

