
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August 2019

2391

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8370088619/2019©BEIESP
DOI: 10.35940/ijeat.F8370.088619
Journal Website: www.ijeat.org

Abstract: The method mixes up the extended finite state machine
& UML activity diagram to generate the test model. H good
coverage of test of all probable scenarios. Here an activity
diagram describes the operation of the system, decision ere we
have considered different coverage criteria for generating the test
paths from the model for node transition from one action state to
another. Also flow of control is represented. These will emphasis
on sequence and condition of flow. It also gives idea about
internal nodes.
Refactoring is the process of altering an application’s source code
of its external behavior is not changing. The purpose of code
refactoring is to improve some of the nonfunctional properties of
the code, such as readability, complexity, maintainability and
extensibility.
Refactoring can extend the life of source code, preventing it from
becoming legacy code. The refactoring process makes future
enhancements to such code a more pleasant experience.
Refactoring is also known as reengineering.
Test cases tend to be massive in range as redundant take a
look at cases square measure generated because of the
presence of code smells, thus the requirement to scale
back these smells.
Methods Statistical Analysis: This analysis adopts a proactive
approach of reducing action at laws by police investigation
the lazy category code smells supported the cohesion and
dependency of the code and applying the
inline category refactoring practices before take a look at case
generation there by considerably avoiding redundant take a
look at cases from being generated..

Index Terms: UML, sequence diagram, depth first search
algorithm, software testing, test case generator, refactoring,
redundancy test case.

I. INTRODUCTION

Take a look at cases square measure assumed to mirror the
first package underneath take a look at (SUT). Hence the
effectiveness of action at law generated is associated to the
standard of the ASCII text file of system underneath take
a look at.

Revised Manuscript Received on August 30, 2019.

* Correspondence Author
Runal G.*, IT Department, Bharati Vidyapeeth Deemed to be University

College of Engineering, Pune, India.
Prof. Pramod Jadhav, IT Department, Bharati Vidyapeeth Deemed to

be University College of Engineering, Pune, India.
Prof. Pruthviraj R. Pawar, Computer Department, Bharati Vidyapeeth

College of Engineering, Navi Mumbai, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Up the standard & liableness of take a look at cases
generated improves the quality of take a look
acting whereas an improvement in ASCII text
file will enhance the standard of test cases generated.
SOA is a field of study manner that styles and develops
package within the style of fast, low-cost, loosely
coupled and simple integrated in heterogeneous
environments. Project service square measure a concrete
implementation of the SOA and that they are developed
by mistreatment open standards like SOAP, WSDL, and
UDDI supported XML. Since composite project services
has been created for mission crucial services and
sophisticated business processes, the composite project
services testing is important to confirm the execution of
whole business method is consistent and guarantee a
better service quality and liableness. Code refactoring
is the method of restructuring existing coding
system dynamic the factorization while not dynamic its
external behavior. Refactoring is meant to
boost nonfunctional attributes of the software. Blessings
embrace improved code readability and reduced quality.

II. SYSTEM IMPLIMENTATION

System Architecture

Figure 1: Architectural view of Functional Test case

generation & Redundancy Check.
Methodology
To achieve all our objectives, we are going to use following
methodology:
1. Input Activity Diagram:
2. ADT Generation

 XML Code generation
3. Test Suit Generation

UML Activity Diagram Use for Functional Test
Suit Generation and Redundancy

Removal Supported Model Driven Testing

Runal G., Pramod Jadhav, Pruthviraj R. Pawar

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.F8370.088619&domain=www.ijeat.org

UML Activity Diagram Use for Functional Test Suit Generation and

Redundancy Removal Supported Model Driven Testing

2392

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8370088619/2019©BEIESP
DOI: 10.35940/ijeat.F8370.088619
Journal Website: www.ijeat.org

4. Redundant test case suite the system takes two inputs as
activity diagram and generate test coverage path. Compare
both the results and select most appropriate path for test case
generation.This considers the various coverage criteria to
generate test path that covers best test coverage of total
situations. The presented work takes an activity diagram as
input. Each activity diagram is well-known about making its
ADT. This means to hold all needed details which are able
to modify the model to look at capabilities and functionalities
of all activity diagrams.
The outlines of each module are given as follows:

1) Generation of ADT:

Activity Dependency Table defines the loops,
synchronization and strategies presenting the actions of the
task are created technically utilizing every activity diagram.
This decides to indicate the activities can move into the
totally different entities.

2) Generation of ADG:

ADG are mechanically generated from the activity
dependency table that is ADT. Names are given to every node
by utilizing the symbols of the every task among the ADG.
Here each node will display component or functionality
within the activity diagram. As repetitive functionalities
are specifies a consistent image among the ADT, only
one node is made for them however what proportion
times they're used among the activity diagram. It’ll decreases
the time needed for search operation within ADG.

3) Test cases Generation:

Here we are going to apply Depth First Search strategy for
obtaining all the test paths consider for testing. The test path
is designed from steps presenting the consecutive nodes.
These steps will form complete path which start from first
node to the end node in the ADG.

4) Redundancy controller:

One way to provide multiple “controllers” is to implement a

“mirroring backup” so that another system also collects all

data. If the system is controlling in real-time, having more
than one CPU in the system is ideal, creating a bump
less control system. This is a common requirement for
redundancy.

5) Class Refactoring:

Much of refactoring is devoted to correctly composing
methods. In most cases, excessively long methods are the root
of all evil. The refactoring techniques in this group streamline
methods, remove code duplication, and pave the way for
future improvements. It shows how to safely move
functionality between classes, create new classes, and hide
implementation details from public access.

Algorithm 1 Detection of Lazy Class

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August 2019

2393

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8370088619/2019©BEIESP
DOI: 10.35940/ijeat.F8370.088619
Journal Website: www.ijeat.org

Algorithm 2 Refactoring of Lazy Class

III. RESULT ANALYSIS

Before Class Refactoring

Sr.
No.

Class
Name

Attribute
s

Methods

1 ATM
Location
Branch

Show()

2
Card

Scanner

AcceptCard(),
ReadCard(), EjectCard(),
ValidatePin()

3
Card

Dispense
r

Available
Cash

SupplyCash(),
GenerateRecepit()

4
ATM
Card

pin,
CardID,

Acc

SetPIn(), GetPin(),
GetAccount()

5
Bank

Custome
r

Customer
Name,

Address,
Email,

Card, Acc

InsertCard(),
SelectTransaction(),
EnterPIn(), ChangePin(),
WithdrawCash(),
RequestTransactionSum
mary(), AcceptAmount()

6
Display
Screen

 Prompt(), AcceptInput()

7
Transact

ion

Date,
Amount,
Deposit

CalculateBalance(),
SetTransaction(),
GetAccountBalance(),
CancelTransaction()

8 Account

Account
Number,
Balance,

Trans

CalculateInterest(),
UpdateAccount(),
VerifyWithdrawAmount(
)

9
Saving

Account
Interest

Rate
CalculateInterest()

10
Current
Account

Interest
Rate

CalculateInterest()

Table 1 before Class Refactoring
Here, Account is Host class and movable classes are
SavingAccount and CurrentAccount.

After Class Refactoring

Sr.
No.

Class
Name

Attribute
s

Methods

1 ATM
Location
Branch

Show()

2
Card

Scanner

AcceptCard(),
ReadCard(), EjectCard(),

ValidatePin()

3
Card

Dispense
r

Available
Cash

SupplyCash(),
GenerateRecepit()

4
ATM
Card

pin, Card
ID, Acc

SetPIn(), GetPin(),
GetAccount()

5
Bank

Customer

Customer
Name,

Address,
Email,

Card, Acc

InsertCard(),
SelectTransaction(),

EnterPIn(), ChangePin(),
WithdrawCash(),

RequestTransactionSumm
ary(), AcceptAmount()

6
Display
Screen

 Prompt(), AcceptInput()

7
Transacti

on

Date,
Amount,
Deposit

CalculateBalance(),
SetTransaction(),

GetAccountBalance(),
CancelTransaction()

UML Activity Diagram Use for Functional Test Suit Generation and

Redundancy Removal Supported Model Driven Testing

2394

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8370088619/2019©BEIESP
DOI: 10.35940/ijeat.F8370.088619
Journal Website: www.ijeat.org

8 Account

Account
Number,
Balance,
Trans,
Interest

Rate

CalculateInterest(),
UpdateAccount(),

VerifyWithdrawAmount()

Table2 Result after Class Refactoring
We have update Account Class as this is host class of
‘SavingAccount’ and ‘CurrentAccount’.

Analysis of Class
Before Class Refactoring

Sr.
No.

Class Name
No. of

Methods
Line of Code

1 Account 3 9

2
Saving

Account
1 3

3
Current
Account

1 3

Table 3 before Class Refactoring Analysis of Class

After Class Refactoring Analysis of Class

Sr.
No.

Class
Name

No. of
Methods

Line of
Code

1 Account 4 12

 Table 4 after Class Refactoring Analysis of Class

Branch Coverage

Branch Coverage = *100

Before Class Refactoring Branch Coverage

Sr.
No.

Class
Name

No. of
Methods

Branch
Coverage

1 Account 3 45%

2
Saving

Account
1 15%

3
xCurrent
Account

1 15%

Table 5 before Class Refactoring Branch Coverage

After Class Refactoring Branch Coverage

Sr.
No.

Class Name
No. of

Methods
Branch

Coverage

1 Account 3 45%

2

Lazy Class
(Merged both
Class into host

class)

1 15%

Table 6 after Class Refactoring Branch Coverage

Test Cases Generated

Before Class Refactoring TC generated

Sr.
No.

Test
Case

Scenario Input
Expected
Output

Actual
Output

1
Saving

Account
-TC1

Calculate
Interest

Interest
Rate

Get
Result
with
Float
Value

Get
Result
with
Float
Value

2
Current

Account-
TC1

Calculate
Interest

Interest
Rate

Get
Result
with
Float
Value

Get
Result
with
Float
Value

Table 7 before Class Refactoring TC generated

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August 2019

2395

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8370088619/2019©BEIESP
DOI: 10.35940/ijeat.F8370.088619
Journal Website: www.ijeat.org

After Class Refactoring TC generated

Sr.
No.

Test
Case

Scenario Input
Expected
Output

Actual
Output

1

Saving
Account

and
Current
Account
-TC1*

Calculate
Interest

Interest
Rate

Get
Result
with
Float
Value

Get
Result
with
Float
Value

Table 8 after Class Refactoring TC generated
 As shown within the Table one shows the analysis of
lazy category refactoring supported cyclamate quality &
branch coverage compared with the first allocate ASCII
text file. An action at law decrease approach is incomplete
if the quality of the action at law isn't ensured. One
amongst the ways that to try and do this can be hard the
branch coverage of the before and once refactoring code
& scrutiny result.

Fig 2. Refactoring results of no. of methods of classes

for withdraw
 Refactoring results of no. of methods of classes for pin
changes

Before

Refactoring
After Refactoring

Class
Diagram

17 13

Table 9 Refactoring results

IV. CONCLUSIION

According to our experience, the input activity diagram
maintains the flexibility appropriately for defining the
requirements. Also these diagrams are applicable for
automatic process. The activity diagrams give some notation
and these notations are referred for describing the model. The
proposed method is able for creating more capable or
proficient test suit by saving the time of tester. Also it saves
the effort and increase quality of test cases which was
generated by this method. In short, overall performance of
testing process can be improved by this method. Here, we are
presented several criteria of covering test path generation and
algorithm for generating the test path automatically. During
this paper, we have got shown the way to develop take a look
at model and way to outline coverage criteria.
Conjointly target to develop take a look at path
generating algorithmic rule for Activity diagram given
path. The end result shows that refactoring the ASCII text
file before action at law generation has reduced the take a
look at cases by thirty three percentage and inflated the
branch coverage up to nine two percentage. Hence, the
approach could be prospective action at law reduction
technique. This means that the price and energy in
testing is reduced by eliminating the code
smells before action at law generation.

UML Activity Diagram Use for Functional Test Suit Generation and

Redundancy Removal Supported Model Driven Testing

2396

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8370088619/2019©BEIESP
DOI: 10.35940/ijeat.F8370.088619
Journal Website: www.ijeat.org

REFERENCES

1. Rajvir Singh, “Test Case Generation for Object-Oriented Systems:
A Review” IEEE, Fourth International Conference on

Communication Systems and Network Technologies, 2014.
2. Soma Sekhara Babu Lam et al. “Automated Generation of

Independent Paths and Test Suite Optimization Using Artificial
Bee Colony” Procedia Engineering, Elsevier pp. 191-200, 2012.

3. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model based
testing approaches. Softw.Test.Verif. Reliab. 22(5), 297–312
(2012).

4. Tripathy A, Mitra A. Test case generation using activity diagram
and sequence diagram. In: Proceedings of International Conference
on Advances in Computing. Springer; 2013. p. 121–9.

5. Lashari SA, Ibrahim R, Senan N. Fuzzy Soft Set based
Classification for Mammogram Images. International Journal of
Computer Information Systems and Industrial Management
Applications. 2015; 7:66–73.

6. Ahmed M, Ibrahim R, Ibrahim N. An Adaptation Model for
Android Application Testing with Refactoring. Growth. 2015;
9(10):65–74.

7. Vikas Panthi, Durga Prasad Mohapatra, “Automatic Test Case

Generation using Sequence Diagram”, International Journal of
Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA Volume 2–
No.4, May 2012 – www.ijais.org.

8. Md Azaharuddin Ali et.al. “Test Case Generation using UML State

Diagram and OCL Expression”, International Journal of Computer
Applications (0975 – 8887) Volume 95– No. 12, June 2014.

9. S. Shanmuga Priya et.al, “ Test Path Generation Using UML
Sequence Diagram”, Volume 3, Issue 4, April 2013 ISSN: 2277

128X International Journal of Advanced Research in Computer
Science and Software Engineering.

10. Ching-Seh Wu, Chi-Hsin Huang," The Web Services Composition
Testing Based on Extended Finite State Machine and UML Model",
2013 Fifth International Conference on Service Science and
Innovation.

AUTHORS PROFILE

Miss Runal G. M.Tech IT student in Bharati Vidyapeeth
Deemed to be University College of Engineering, Pune. She was
Completed her Graduation Degree 2016, from Avinashilingam
University for Women’s, Coimbotre.

Prof. Pramod Jadhav, he is working as an Assistant Professor in
Bharati Vidyapeeth Deemed University College of Engineering,
Pune. He has 12 Years’ experience in Teaching. He is Pursuing
PhD in Bharati Vidyapeeth Deemed Universirty, Pune.

Prof. Pruthviraj R. Pawar, he is working as an Assistant
Professor in Bharati Vidyapeeth’s College of Engineering, Navi
Mumbai. He has 5 years’ Experience in Teaching Field. He is
Pursing PhD in Maharashi University of Information
Technology, Lucknow.

http://www.ijais.org/

