
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August 2019

1196

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8368088619/2019©BEIESP
DOI: 10.35940/ijeat.F8368.088619
Journal Website: www.ijeat.org

Abstract: SDN network supports centralized network

management by splitting control plane and data plane of
forwarding devices and places the network intelligence in a
software entity called controller. The controller can be placed in
selective places of network to effectively monitor and control
network activities. Large scale network needs multiple controller
to manage control activities of network. In order to identify the
optimum number of controllers and its effective locations in the
network, a new algorithm is proposed using cut-vertex concept
from graph theory. The proposed algorithm is simulated using
Mininet SDN emulator. To study the performance of the proposed
algorithm, multiple scenarios were used in the simulation and
performance was analysed using parameters viz., flow installation
time, average latency of network, throughput.
Index Terms: Controller placements, Cut-vertex, Mininet,SDN

I. INTRODUCTION

 With the development of new technologies like fog and
Internet of Things (IoT), a large number of devices are
connected to the Internet and management of these devices
would be a challenging task in the future Internet. In the
existing network architecture, each and every forwarding
device in network performs both computations and packet
forwarding and both data and control planes are tightly
packed together. A huge volume of data is being generated
and managing high volume of traffic is difficult. New
technologies like Fog computing needs minimal latency to
forward data from one end to another end and the complexity
increases with increase in the number of devices connected to
the Internet. CISCO predicts 50 million devices will be
connected by 2020. The future network management lies in
the technologies like SDN, NFV.
SDN manages network by separating the data and control
planes from the hardware devices and thereby it removes
dependency of the proprietary devices whereas NFV aims at
virtualization of network services. The centralized approach
of SDN and the programmability of data plane makes easier
to distribute traffic and balance load in network. The
architecture of SDN contains control, data

Revised Manuscript Received on August 30, 2019.

* Correspondence Author
G Ramya*, Computer Science and Engineering, Pondicherry

Engineering College, Pondicherry, India.
R Manoharan, Computer Science and Engineering, Pondicherry

Engineering College, Pondicherry, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

and application planes. In SDN, network intelligence is
moved to a software entity called controller which lies in
control plane. Forwarding devices (switches, routers) are
located in data plane whilst applications like NAT, IDS lies in
the application plane of SDN. The forwarding elements of
network simply forwards packet according to the rule
installed by the controller. Controller performs control
operations and thereby managing the network. Placing
controller in appropriate locations in a network will certainly
increase the performance of network.
The data flow in the data plane of SDN is verified by the
controller. Every PACKET_IN messages should get
permission from controller, which verify packets according
to the network policy. Controller computes a route for all
PACKET_IN and adds the routing information in a table
called flow table located in all forwarding devices of data
plane.The Controller Placement Problem (CPP) is a
well-known research problem of SDN. Identifying the
number of controllers required for network and placing them
in its optimal locations is defined as CPP in SDN. To
elaborate the problem of CPP, let us assume a large area
network controlled by a single controller. The controller
connected with the farthest node yields more latency thereby
increasing the response time. This will certainly affect the
performance of network. Besides that, single controller is
always affected by “single point failure”. Failure in a

network may lead to link disconnection and communication
will also fail. Sometimes, path may get disconnected and it is
very difficult to manage that situation. In order to prevent
aforementioned scenario, multiple controller which are
physically distributed in the network concept was introduced.
The multiple controllers enhance the performance in the
aspects of scalability, availability and reliability of network.
This will decrease the response time, increases the
throughput and yield better results than the single controller
scenario. In the case of multiple controllers, even if one
controller fails; there would be several other controllers
available, which can take care of control operations. But the
actual challenge lies in deciding of “estimating the optimum

number of controllers and the location in the network to place
it”. The controller to node latency plays a vital role in

network performance. Because, whenever a packet arrives,
flow table values can be updated in three methods:” (i)
reactive (ii) proactive and (iii) hybrid”. In reactive mode,

after the arrival of a packet, the node sends request to
controller to update flow table entry. Whereas in the case of
proactive method, the controller installs and updates table
entries even before the packet arrives.

A New Algorithm for Controller Placement in
SDN

 G Ramya, R Manoharan

https://www.openaccess.nl/en/open-publications
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.F8368.088619&domain=www.ijeat.org

A New Algorithm for Controller Placement in SDN

1197

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8368088619/2019©BEIESP
DOI: 10.35940/ijeat.F8368.088619
Journal Website: www.ijeat.org

In hybrid methodology, controller can proactively update and
reactively respond to dynamic scenarios. Calculating
round-trip time taken to update flow table entry is termed as
“flow installation time”. Suppose, the amount of time taken
to update data is high leading to high latency, resulting in
packet delay and overall performance gets affected.
This paper adapts a concept from graph theory to identify the
required number of controllers and its placement issue. The
performance was analysed using metrics like average latency,
throughput and flow installation time from controller to node.
The proposed work is compared with the same performance
metrics when the controllers were placed randomly and when
the controllers were placed in the place of vertex whose
degree is maximum and with the K-Medoids algorithm.
This paper is organized as follows. Section II deals with the
brief description of the existing research works done in CPP.
Section III describes the problem statement. Formal
definitions are presented in section IV. The proposed
methodology is described in section V. Results and analysis
are explained in detail in section VI. Finally concludes with
conclusion and future enhancements.

II. RELATED WORK

The Controller Placement Problem was studied with various
aspects such as placing multiple controllers to improve
scalability, reliability and distribute load among
controllers[17]. In [5], the authors translated the controller
placement problem into a facility location problem. The
latency between node and controller was the primary
parameter for controller placement. The authors also claimed
that the exhaustive evaluation of search space may result in
finding optimal controller placements with reference to
latency. The inference from their work is the exhaustive
search may find controller locations with latency as major
parameter. It is also inferred that average and worst-case
scenarios in terms of latencies cannot be optimized.
Furthermore, in some cases, a single controller can meet
network demands of communication latency. A single
controller approach is always prone to single point failure.
Bari.et al. [6], proposed a methodology to reduce the flow set
up time.In [7][8], the authors identified controller locations
using a Pareto Optimal Controller Placement (POCO)
technique by considering the latency parameter. The search
space for placing the k-controllers were analysed in terms of
controller - node latency, controller to controller latency, load
balancing amongst controllers and link/node failure
situations. Moreover, the number of controller’s ‘k’ to be

placed was given as an input parameter. This work
considered that nodes are connected to the nearest one, which
may not be applicable to dynamic scenarios. In [9], the
authors tried to balance the load by placing single controller
in network and proposed a method to perform switch
migration. Rath.et al. [10] applied a game theory concept for
maximum utilization of controllers. The number of
controllers was taken as input parameter and is limited to
small-scale SDN. Yao.et al. [11] and Jimenez et al. [12] taken
load as primary parameter for assigning nodes to controller.
They estimated number of controllers needed only when the
traffic is static. Sahoo et al. [13] proposed simulated
annealing methodology by considering latency as a
parameter to place controllers. They analysed the
performance of network only when the traffic is static.

Sanner et al. [14] proposed a hierarchical clustering of
controllers for finding optimal controller placements.
Clusters were formed using adapted k-mean algorithm and
hierarchical clustering methodology was adapted to merge
clusters for controller placements. Many heuristics and
machine learning [16] methodologies have been proposed to
place controllers in optimal locations. A few approaches
followed cluster theory where node clusters were formed and
controller was placed as a cluster head. In other approaches,
translated CPP into mathematical optimization problems like
facility location problem, linear integer problem and many
other optimization methodologies. Random placements were
adopted in few approaches and performance were studied. A
few authors used heuristics techniques and performance were
analysed using parameters like load, latency, throughput,
etc..,. In most of the above-mentioned methodologies, the
number of controller’s “k” was given as input. Then the

controllers were placed in optimal locations.

III. PROBLEM STATEMENT

Given a network (undirected graph), G= (V, E) where V
refers to forwarding elements of data plane and E refers to the
links that are connecting the elements. The problem
statement is to find the optimal number of controllers i.e., a
subset of V and its placement in appropriate locations in the
given topology to improve the network performances in
terms of flow installation time, average latency, packet delay
variation and throughput.

IV. DEFINITIONS

In this section, the notations are formally presented. Given a
graph G, ‘S’ be the set of switches and ‘C’ represents the

controllers set. Let ‘k’ be the number of controllers. The

switch and controller set can be defined as follows:

where ‘m’ is the number of vertices

Given a graph G, finding the number and its locations Pk in a
search space L is a combinatorial optimization problem. The

number of possible placements can be taken from

 . The

connection between the switch and controller is defined as
follows (1):

 (1)

 represents i th switch is connected to jth controller.
The load of controller (∆) is directly proportional to the

number of PACKET_IN (flow request) and is given as
below:

V. PROPOSED SYSTEM

A node is said to be a cut-node or articulation point only
when the removal of a node disconnects the graph. Finding
articulation points generates the number of controllers
required and locates its placements [18].

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August 2019

1198

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8368088619/2019©BEIESP
DOI: 10.35940/ijeat.F8368.088619
Journal Website: www.ijeat.org

In neighbourhood search algorithm or in any meta-heuristic
optimization, the number of controllers required was given as
input parameter. But in the case of proposed methodology, a
topology is sufficient to estimate the required numbers of
controller. The algorithm starts with scanning the topology to
find out the articulation points in network.

Fig 1. Algorithm for finding articulation points

The standard Depth First Search algorithm (DFS) is utilized
for estimating number of controllers and its locations in
network. The DFS algorithm applies the concepts from ‘DFS

tree’. Node or vertex ‘u’ in topology is the parent of node ‘v’

in DFS tree if and only if ‘v’ is discoverable by u. DFS
algorithm is executed by maintaining the following data:

i. depth of each and every visited node
ii. low-point

In DFS tree, a node ‘u’ is said to be an articulation point if it

satisfies any one of the following constraints:
i. node ‘u’ is root node of the tree and ‘u’ has at

least two children.
ii. Node ‘u’ is not a root node and it has a child

called ‘v’ (‘v’ is the adjacent of ‘u’ in graph) such

that there is no node in subtree has connectivity
with any of the ancestors of ‘u’.

Given a graph G, a DFS traversal is made and DFS tree is
constructed. A dynamic array of adjacency list is also created.
If the nodes 2 and 5 are removed from figure 2 then there is
no communication link from node 3 to nodes 4, 6, and 7 and it
is shown as dashed lines.

Fig 2. Example construction of DFS tree

Let ‘ ’ be the node to be visited next. visited[], an array

keeps track of visited nodes during the execution of algorithm.
Let discovery_time[], stores discovery time of visited nodes.
Let parent[], stores parent vertices in DFS tree. Finally, let
ap[],stores articulation points (k). A recursive function was
written to find out articulation points while performing DFS
traversal. First initialize low_time to 0. Count the number of
children in DFS tree. Make the current node as visited.
Initialize its discovery time and update its low value by using
(2).

 (2)
where,
Dt - Discovery time
lt - represents Low time
Visit all the nodes adjacent to visited node. Check whether
the adjacent nodes have already visited or not. In each
iteration, the discovery_time and low_time values are
updated. If the adjacent node is not visited, then make it as the
child of already visited node v in DFS tree and call it
recursively. Check if the subtree has a connectivity with any
of the ancestors of v. If not return that node as articulation
point.
The topologies considered for experiment was given as input
to the algorithm. The algorithm generates all the AP
identified in the topologies. More than one AP’s were

generated for all the topologies taken. For Iris topology, the
nodes [5,6,39,22,10,29,2,3,0] are identified as AP.
Likewise,[8,33,25,28,23,27,39,38,0],
[3,33,7,55,35,41,51,43,20,42,27], [3,33,30,13] and
[47,3,3,5,40,6,5,9,49,52,51] are identified as AP’s for China

telecom, Forthnet, LambdaNet and BTN respectively. The
switches were connected with the nearest controllers.

VI. RESULTS AND ANALYSIS

This section elaborates the simulation setup, metrics used for
evaluating the performance of proposed system and
comparison of proposed with existing methodologies.
Various topologies are taken from Internet Topology Zoo
(China Telecom: 41 nodes, BTN: 52 nodes, IRIS: 50 nodes,
LambdaNet: 41 nodes and Forthnet: 61 nodes). The
controller nodes are the subset of vertex. Each and every
switch in the network was connected with at least two hosts.
Iperf, ITG were executed to generate network traffic. The
proposed approach was compared with controllers placed in
the random position (RP), nodes of higher degree (HP) and
by using K-Medoids algorithm. The results obtained from
multiple runs of all the algorithm utilized for comparison.
The following are the metrics used for evaluating the
performance of the proposed system.
Throughput:
The throughput may be calculated as the number of packets
transmitted over the given period of time and it is calculated
by using the following formula.
Flow Installation Time:

The flow installation time may be described as
communication latency between the switch and controller
and it can be calculated by using equation 3.

(3)

Average Latency:

The average latency can be defined as the amount of time
taken to send a packet. The latency between switch and
controller can be defined as in equation 4:

 (4)

It is evident from the analysis; the proposed methodology for
placing controllers outperforms RP and HD.

https://www.openaccess.nl/en/open-publications

A New Algorithm for Controller Placement in SDN

1199

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8368088619/2019©BEIESP
DOI: 10.35940/ijeat.F8368.088619
Journal Website: www.ijeat.org

The experiment was conducted by varying the number of
controllers (k=1,2,3) for all the topologies considered and
same type of traffic was generated to all the controllers and
for all the algorithms.
Flow Installation Time:
The FIT decreases with increase in the number of controllers
in the network. Figure 3a,3b,3c. shows the FIT values for
various topologies for the number of controllers 1,2,and 3
respectively. Though the FIT value of AP is increases with
decrese in the number of controllers, the value remains low
when compared with other approaches. The value ranges
between 120- 790 (ms) for AP placements which is very low
when compared with HD, RP, and KM. Figure 3a depicts the
FIT values of AP when the number of controllers is 1,2,3.
There is an average of 25% to 70% improvement in the
proposed methodology when compared with RP, HD and
K-Medoid.

Fig. 3a. FIT (k=1)

Fig. 3b. FIT (k=2)

Fig. 3c. FIT (k=3)

Fig. 3d. FIT values of AP

Average Delay:
The average delay decreases with increase in the number of
controllers in the network. Figure 4a,4b,4c. shows the
avereage delay values for various topologies for the number
of controllers 1,2, and 3 respectively. The average delay of
AP falls in the range of 180-800 (ms). There is 30% to 65%
improvement in the average delay of the network when the
controllers are placed in the articulation points (AP).

Figure 4a. Average delay (k=1)

Figure 4b. Average delay (k=2)

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August 2019

1200

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8368088619/2019©BEIESP
DOI: 10.35940/ijeat.F8368.088619
Journal Website: www.ijeat.org

Figure 4c. Average delay(k=3)

Figure 4d. Average delay of AP

Throughput:
Figure 5a,5b,5c depicts the throughput values of various
topologies for the controllers 1,2, and 3. From the figure, it is
evident that the throughput values increase with increase in
the number of controllers. This may be due to a smaller
number of switches connected to controllers when the
controller numbers are increased. Throughput of AP is
increased in the range of 18% in some cases the value gets
increased and falls in the average of 70%.

Figure 5a. Throughput (k=1)

Figure 5b. Throughput (k=2)

Figure 5c. Throughput (k=3)

Figure 5d. Throughput values of AP

VII. CONCLUSION

 In this paper, a concept from graph theory is adapted to
estimate number of controllers and its placements. The
controller placement method identifies the articulation points
in network and places controller at articulation points.
Various topologies from Internet Topology Zoo are
simulated and the results are studied in terms of throughput,
flow installation time, Average delay. From the results
obtained, it is evident that the proposed approach
outperforms the existing methodologies. In future, this work
can be extended to study the performance of controller in
terms of load balancing.

https://www.openaccess.nl/en/open-publications

A New Algorithm for Controller Placement in SDN

1201

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8368088619/2019©BEIESP
DOI: 10.35940/ijeat.F8368.088619
Journal Website: www.ijeat.org

REFERENCES

1. H.Farhady et.al., “Software -Defined Networking: A survey”,

Computer Networks, 2015.
2. A.Hakiri, A.Gokhale, P.Berthou, D.C. Schmidt, G.Thierry,

“Software-defined Networking: Challenges and Research
opportunities for future Internet,” Computer Networks, 2014.

3. J.Xie. et.al., “Control plane of software defined networks: A survey,”
Computer communications, 2015.

4. Open Networking Foundations, “Software-Defined Networking: The
New Form for Networks,” ONF white paper, April 2012.

5. Heller, Brandon, Rob Sherwood, and Nick McKeown. "The controller
placement problem." In Proceedings of the first workshop on Hot
topics in software defined networks, pp. 7-12. ACM, 2012.

6. Yao, Guang, Jun Bi, Yuliang Li, and Luyi Guo, "On the capacitated
controller placement problem in software defined networks," IEEE
Communications, vol. 18, no. 8, pp. 1339-1342, 2014.

7. Bo, Hu, Wu Youke, Wang Chuan'an, and Wang Ying. "The controller
placement problem for software-defined networks." In 2nd IEEE
International Conference on Computer and Communications (ICCC),
pp. 2435-2439, 2016.

8. Lange, Stanislav, Steffen Gebert, Thomas Zinner, Phuoc Tran-Gia,
David Hock, Michael Jarschel, and Marco Hoffmann. "Heuristic
approaches to the controller placement problem in large scale SDN
networks." IEEE Transactions on Network and Service Management,
vol. 12, no. 1, pp. 4-17, 2015.

9. Hock, David, Matthias Hartmann, Steffen Gebert, Michael Jarschel,
Thomas Zinner, and Phuoc Tran-Gia. "Pareto-optimal resilient
controller placement in SDN-based core networks." In 25th IEEE
International Teletraffic Congress (ITC), pp. 1-9, 2013.

10. Bari, Md Faizul, Arup Raton Roy, Shihabur Rahman Chowdhury, Qi
Zhang, Mohamed Faten Zhani, Reaz Ahmed, and Raouf Boutaba.
"Dynamic controller provisioning in software defined networks."
In 9th IEEE International Conference on Network and Service
Management (CNSM), pp. 18-25, 2013.

11. Rath, Hemant Kumar, Vishvesh Revoori, S. M. Nadaf, and Anantha
Simha. "Optimal controller placement in Software Defined Networks
(SDN) using a non-zero-sum game." In 15th IEEE International
Symposium on World of Wireless, Mobile and Multimedia Networks
(WoWMoM), pp. 1-6, 2014.

12. Jimenez, Yury, Cristina Cervello-Pastor, and Aurelio J. Garcia. "On
the controller placement for designing a distributed SDN control
layer." In IEEE Networking Conference, pp. 1-9, 2014.

13. Sahoo, Kshira Sagar, Bibhudatta Sahoo, Ratnakar Dash, and Nachiketa
Jena. "Optimal controller selection in Software Defined Network using
a greedy-SA algorithm." In 3rd IEEE International Conference on
Computing for Sustainable Global Development (INDIACom), pp.
2342-2346, 2016.

14. Sanner, Jean-Michel, Yassine Hadjadj-Aoufi, Meryem Ouzzif, and
Gerardo Rubino. "Hierarchical clustering for an efficient controllers'
placement in software defined networks." In IEEE Global Information
Infrastructure and Networking Symposium (GIIS), pp. 1-7, 2016.

15. Knight, Simon, Hung X. Nguyen, Nick Falkner, Rhys Bowden, and
Matthew Roughan. "The internet topology zoo." IEEE Journal on
Selected Areas in Communications 29, no. 9 (2011): 1765-1775.

16. Xie, Junfeng, F. Richard Yu, Tao Huang, Renchao Xie, Jiang Liu,
Chenmeng Wang, and Yunjie Liu. "A survey of machine learning
techniques applied to software defined networking (SDN): Research
issues and challenges." IEEE Communications Surveys & Tutorials 21,
no. 1 (2018): 393-430.

17. Lu, Jie, Zhen Zhang, Tao Hu, Peng Yi, and Julong Lan. "A Survey of
Controller Placement Problem in Software-defined
Networking." IEEE Access 7 (2019): 24290-24307.

18. Ramya, G., and R. Manoharan. "Enhanced Multi-Controller
Placements in SDN." In 2018 International Conference on Wireless
Communications, Signal Processing and Networking (WiSPNET),
IEEE, 2018, pp. 1-5.

