Performance Assessment of Routing Protocols in Ad Hoc Network with Impression of Ad Hoc Cloud and Internet of Things

Vijaya Lakshmi Singh, Dinesh Rai

Abstract: Ad hoc network is a decentralized network in which organization of network, message transmission and delivery is executed with nodes themselves. Routing is a critical issue that determines the performance of the network. This paper is a multifold, impression, study, and simulation based paper. At first impersonation of Ad hoc, Cloud, Ad hoc cloud and Internet of Things (IoT) is done. Then a study is done to identify the most important and effective performance parameters, metrics, factors and issues of Ad hoc network. In the last part the routing protocol named AODV, DSR, TORA, OLSR and GRP are simulated, implemented and then performance analysis of these protocols are done considering important parameters that are identified in this study.

Keywords: Ad hoc network, Ad hoc On-Demand Distance Vector (AODV), Ad hoc cloud, cloud network, Dynamic Source Routing (DSR), Geographic Routing Protocol (GRP), Optimized Link State Routing (OLSR), Temporally Ordered Routing Algorithm (TORA).

I. INTRODUCTION

Ad Hoc network is a wireless network that does not need any centralized architecture. In this network each node acts as a router and forward data for the other nodes. Hence the network is ad hoc. Based on the network connectivity, it is determined dynamically which node forwards data. So it is very much different than the wired networks where router is needed to perform the task of routing. Also it is different from the managed wireless network where the access point manages data communication among other nodes. Fig. 1 shows simple examples of Ad hoc network [1].

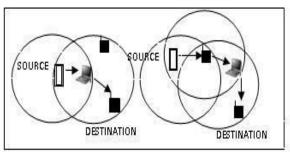
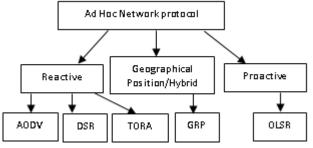
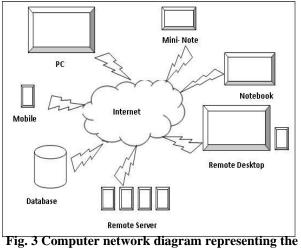


Fig. 1 Network representing ad hoc [1]


Revised Manuscript Received on October 30, 2019.

* Correspondence Author

Dr. Dinesh Rai, Computer Science and Engineering, Ansal University, Gurgaon, India


© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an <u>open access</u> article under the CC BY-NC-ND license (<u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>)

Ad hoc network has a dynamic structure due to which routing in ad hoc network is a difficult task. So there are different categories in such type of network as shown in Fig. 2

Fig. 2 Classification of Ad Hoc routing Protocol

Cloud computing is a concept that uses "pay as per use" model and store data and service on elastic data centers. These services can be accessed through authentication.Cloud services are composed of very adaptable and configurable resources.Fig. 3 show the concept of cloud computing using computer network diagram [2].

concept of cloud [1]

Ad hoc cloud is a term formed when ad hoc network runs cloud services [3].In this kind of network, existing heterogeneous hardware are used to run the cloud services. The Ad hoc clouds allows existing infrastructure as cloud accommodating, the resources available in the environment are used extrusive. This concept can be used to improve their infrastructure efficiency and utilization; furthermore can be used to reduce costs by improving their return on IT investments. This concept is also very useful to those who are not able to use the commercial or private cloud [4].

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

Vijaya Lakshmi Singh*, Computer Science and Engineering,, Ansal University, Gurgaon, India.

Performance Assessment of Routing Protocols in Ad Hoc Network with Impression of Ad Hoc Cloud and Internet of Things

The Ad hoc cloud architecture is shown in Fig. 4 .Ad hoc cloud has various advantages as mentioned in Fig. 5.

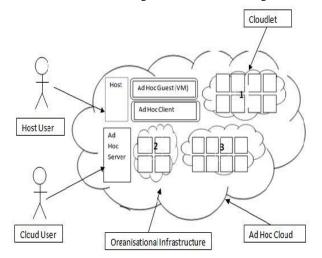
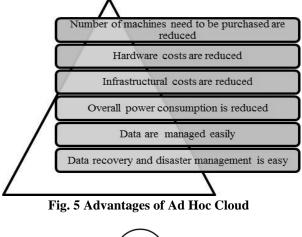



Fig .4 Architecture of the ad hoc cloud [1]

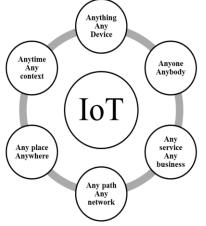


Fig. 6 Internet of Things

Internet of Things (IoT) is an emerging area that involves all of the above concepts. "Internet of Things" is devised from two words "Internet" and "Things". The internet is defined as a network of networks that are linked by various communication media, mode to communicate and share resources and data. The second word, Things can be any object or person that can be discernable by the real world. Things can be living things like human, animal, plant or non-living things like building, electronic devices, etc. There is no universally accepted definition of IoT. Fig. 6 shows the concept of IoT [5].

Ad hoc network is dynamic in nature and so is the IoT. Ad

Retrieval Number F8319088619/2019©BEIESP DOI: 10.35940/ijeat.F8319.088619 Journal Website: <u>www.ijeat.org</u> hoc network is self-organizing and so is the IoT with self-healing feature. All these concepts are immerging very fast and are going to design an urban IoT system and Smart cities that aims at exploiting the most advanced communication technologies to support the authority and citizens [6].

In this paper, at first the concept of new emerging technologies are discussed, in the next section study on the performance metrics, factors and parameters that affect the performance evaluation of the network is done and then at last evaluation and analysis of the performance of the protocols mentioned in Fig. 2 of ad hoc network is performed. The ad hoc network simulated for this paper consists of wireless fixed and mobile nodes.

II. LITERATURE REVIEW

Author	Protoco	Performance Metric and	Conclusion
	ls	Parameters	Conclusion
Jyoti Raju, J. J. Garcia-Lu na-Aceves (2000)[7]	DSR,W SR-Lite	Packet delivery ratio, Control packet overhead, Hop Count, End to End Delay. Packet Size, Traffic type,	WSR-Lite is better than DSR
		Pause time, Speed, Simulation Area, Number of nodes Simulation time, Mobility model	
Dmitri D. Perkins, D. Hughes Herman, B. Owen Charles (2002)[8]	AODV, DSR	AverageThroughput, AverageAverageRoutingOverhead,PowerConsumptionMobilityMobilitymodel,Simulation time, Number of nodes,Simulation Area,Speed, Pause time, Traffic type, Packet Size,Rate, Rate, No. of traffic source, Routing	DSR better than AODV
HuiYao Zhang, John Homer, Garry Einicke, Kurt Kubik (2006)[9]	DSDV, DSR,A ODV,T ORA	Packet delivery ratio, End to End Delay Mobility model, Simulation time, Number of nodes, Simulation Area, Speed, Pause time, Traffic type, Packet Size, Rate	DSR is best
Abdul Hadi Abd Rahman, Zuriati Ahmad Zukarnain (2009)[10]	AODV, DSDV, I-DSDV	Packet delivery ratio, End to end delay, Routing overhead. Mobility model, Simulation time, Number of nodes, Simulation Area, Speed, Pause time, Traffic type, Packet Size, transmission Range	I-DSDV Perform better than DSDV but not than AODV.

There are various Ad Hoc network routing protocol and performance metrics, parameters and factors that affect these protocols. The variables that affect the outcome of the experiment are termed as performance factors and the actual outcomes as performance metrics.

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

 Table 2: Summary of papers [11] to [16]

 Performance parameter quality characterizes a particular

Author	Protocols	Performance Metric and Parameters	Conclusion
Ahmed A. Radwan, Tarek M. Mahmoud and Essam H. Houssein (2011)[11] G. Kioumour tzis, C. Bouras and A. Gkamas (2012)[12]	AODV, FSR, LAR OLSR,DS R,AODV	Routing Message Overhead, Average End-to-End Delay, Throughput Packet Size, Traffic type, Pause time, Speed, Simulation Area, Number of nodes Simulation time, Mobility model, Rate Packet delivery ratio, Normalized routing, Normalized MAC, Average End to End Delay. Mobility model, Simulation time, Number of nodes, Simulation Area, Speed, Pause time, Traffic type, Packet Size, Rate, No. of connactions.	AODV perform better w.r.t throughput, LAR perform better w.r.t end to end delay and FAR perform better w.r.t control overhead. DSR better than others
Vikas Goya, Shaveta Rani, Paramjit Singh (2013)[13]	GRP and TORA	connections Traffic sent, Traffic received, Jitler, Voice MOS Value, Packet Delay Variation, Data dropped, Network load and Throughput Simulation time, Number of nodes, Traffic type, Data Rate, Network Scale, Network Size, Technology used, Physical characteristics	TORA perform best for all metric except throughput, GRP perform better w.r.t throughput.
Muhamma d Asif Mehmood, Ahmed Mateen Buttar, and Muhamma d Ashraf (2014)[14]	OLSR, GRP and TORA	Throughput, network load, media access delay and retransmission. Simulation time, Simulation Area, varying physical characteristics, nodes speed, pause time and number of nodes	OLSR perform outstanding w.r.t. throughput. TORA perform better w.r.t retransmission attempt and media access delay than OLSR and GRP.
Gayatree Rana, Bikram Ballav, Binod Kumar Pattanaya k (2015)[15]	AODV, AOMDV, DSR, PAAODV , DSDV	Packets delivery ratio, energy conservation, throughput and average delay. Simulation time, Simulation Area, Number of mobile nodes, Channel type, Radio-propagation model, Network interface type, Link layer type, Antenna, Maximum packet, Source type, MAC type, Initial Energy.	DSR perform better w.r.t end to end delay and packet delivery ratio, AODV performs better w.r.t throughput, PAAODV perform better w.r.t residual energy.
Adel Aneiba and Mohamme d Melad (2016)[16] attribute	AODV, OLSR, DSR, GRP	Delay and Throughput. Simulation time, Simulation Area, Number of nodes, mobility model, data rate and application	OLSR perform better than others

attribute of the performance metric. Various authors had worked on the performance of Ad Hoc network routing protocol in various applications considering various performance metrics and performance factors. Few of these papers are summarized in this section mentioned above in Table 1 and Table 2.

III. PERFORMANCE METRIC, PARAMETERS, FACTORS AND ISSUES

Based on the above comprehensive study on the performance factor, metrics and parameters of Ad hoc network, the main observations of the study are listed in Table 3.

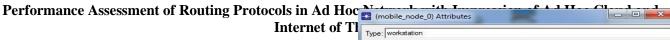
S. No.	Most effective performance metrics	Important parameters that highly influence the performance	Most effective factors and issues
1	Throughput	Traffic type	Storage capacity
2	Network Load	Traffic received/ sent (packets/s, bytes/s)	Security
3	Wireless LAN Delay	Response time	Workload
4	Routing message overhead	Application	Scalability
5	End to End Delay	Number of nodes	Location
6	Packet delivery ratio	Mobility type	Network bandwidth

Table 3 List of Performance Metric, Parameter, Factors and Issues of Ad Hoc Network

The performance metrics among metrics mentioned in above Table 3 that are considered in this paper are:-

- Throughput
- Network Load
- Wireless LAN Delay

IV. METHODOLOGY, SIMULATION ENVIRONMENT AND SIMULATION SCENARIOS


OPNET (Optimized Network Engineering Tool) modeler 14.5 has been used as a simulation tool to implement the network and protocols. It uses the object oriented approach to create and map the network graph. It can be used to design and study the communication networks, application and network devices with a high degree of flexibility. Its graphical editors provide a clear view of network and network components. One reason for choosing OPNET is as a result of its key attributes such as integrated GUI based debugging, customizable and scalable wireless simulation and modeling. [18]

There are five scenarios used in this experiment. Each scenario consists of thirteen fixed wireless nodes and four mobile nodes as shown in Fig. 7. There are two routers node_0 and node_1 and a switch node_16.

Fixed nodes from node_2 to node_7, mobile nodes mo-bile_node_2 and mobile_node_3 have the same attributes (Fig. 8 left) and fixed nodes from node_8 to node_14, mobile nodes mobile_node_0 and mobile_node_1 have the same attributes (Fig. 8 right), also mobile nodes have the same attributes as shown below in Fig. 9.

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

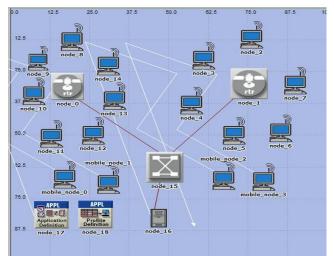


Fig. 7 Simulation Environment for all scenarios

(pe:	workstation		lijp	e: work	5.d001			_
R	tibute	Value 🔺		Atribut	e	Value		
0	- Wireless LAN MAC Address	Auto Assigned	()	W	Areless LAN MAC Address	Auto Assign	ed	
)	8 Wreless LAN Parameters	()	0	81	Vreless LAN Parameters	μ		
0	- BSS Identifier	1	0		-BSS Identifier	2		
)	Access Point Functionality	Disabled	0		Access Point Functionality	Disabled		
)	- Physical Characteristics	Extended Rate PHY (802.11g)	1		-Physical Characteristics	Extended R	ate PHY (802.11g)	
)	- Data Rate (bps)	54 Mbps	0	Data Rate (bps)		54 Mbps		
)	🖲 Channel Settings	Auto Assigned	1	8	9 Charnel Settings	Auto Assign	ed	
)	- Transmit Power (W)	0.005	0		- Transmit Power (W)	0.005		
)	Packet Reception-Power Threshold		0		Packet Reception-Power Threshold.			
)	- Rts Threshold (bytes)	None	0		-Rts Threshold (bytes)	None		
)	- Fragmentation Threshold (bytes)	None	0		-Fragmentation Threshold (bytes)	None		
)	CTS-to-self Option	Enabled	2		-CTS-to-self Option	Enabled		
)	- Shot Retry Limit	7	2		- Short Retry Limit	7		
)	Long Retry Limit	4	0		- Long Retry Limit	4		
)	- AP Beacon Interval (secs)	0.02	0		- AP Beacon Interval (secs)	0.02		
)	Max Receive Lifetime (secs)	0.5	0		- Max Receive Lifetime (secs)	0.5		
)	- Buffer Size (bits)	256000	0		-Buffer Size (bits)	256000		
)	- Roaming Capability	Disabled	0		- Roaming Capability	Disabled		
)	- Large Packet Processing	Drop	0		- Large Packet Processing	Drop		
)	PCF Parameters	Disabled	0		PCF Parameters	Disabled		
)	HCF Parameters	Not Supported	0		HCF Parameters	Not Support	ed	
2		Elter Advanced		8		Fiter	T Apply to se	∏ Ad <u>v</u> an

Fig. 8 Wireless LAN Parameter BSS2 (left), BSS1 (right

There are five scenarios used in this experiment. Each scenario consists of thirteen fixed wireless nodes and four mobile nodes. In the five scenarios AODV, DSR, TORA, OLSR and GRP, five different Ad hoc network protocol has been implemented.

Time duration for simulation considered in this work is 1 hour; 500000 events are update interval; 128 is seed; 100 are values per statics; preference for simulation kernel is based on kernel type; "scenario." is the name of simulation set. This entire configuration is shown in Fig. 10. The simulation speed of is shown in Fig. 11 and simulation message for the scenarios is shown in Fig. 12. Fig. 13 and Fig. 14 shows the 2D animation of packet flow and node flow of the subnet and the 2D animation of node model respectively.

	Attribute	Value
3	r name	mobile_node_0
	- trajectory	vj1
	AD-HOC Routing Parameters	
	ARP	
	Applications	
	■ H323	
	■ CPU	
3	- Client Address	Auto Assigned
	VPN	
	DHCP	
	IP Multicasting	
	Reports	
	⊞ IP	
	I NHRP	
	RSVP	
	I SIP	
	Servers	
	■ TCP	
	19 Wireless LAN	

and mobile nodes

Preview Simulation Set		Number	of runs: 1		
Common Irputa Outputa Outputa Execution Runtime Displays	Values per statistic: Update interval: Simulation Kernel:	128 100 500000	hour(s) events eLtype' preference	▼ ▼ (Prefe	Enter Multiple Seed Values.
	4	1			<u>-</u>

K Simulation Progress: wlan_vj_mobile_project1-scenario_AODV - 0 Simulation progress Estimated remaining time Flansed tin 266 10s Simulated Time: 40m 37s Events: 4,500,012 DES Log: 69 entries Update Progress Info Speed: Average: 175,596 events/sec. Current: 180,963 events/sec eed Live Stats Memory Usage Messages Invocation 200,00 150.000 100,000 50,000 1,000 1,500 500 2,000 2,500 Simulated Time (seconds) V Save output when pausing or stopping simulation Simulation Console 11 Simulation speed window

Published By:

& Sciences Publication

Blue Eyes Intelligence Engineering

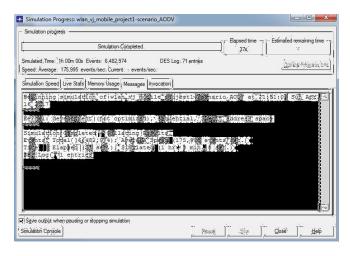


Fig. 12 Simulation message window

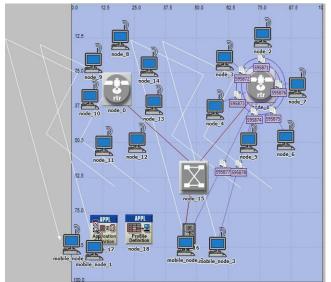


Fig. 13 2D Animation of packet flow and node movement of the subnet

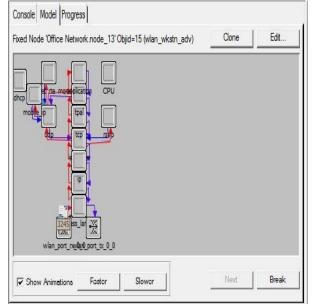
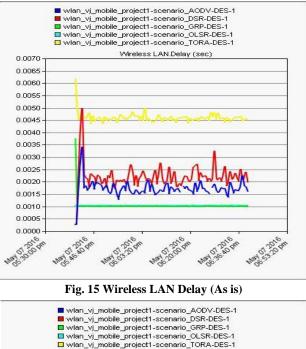


Fig. 14 2D Animation of Node model of the subnet


V. RESULTS AND DISCUSSIONS

The performance metrics that are used in this paper are wireless LAN delay, network load and throughput. Graphs are generated based on the simulation performed using five

Retrieval Number F8319088619/2019©BEIESP DOI: 10.35940/ijeat.F8319.088619 Journal Website: www.ijeat.org scenarios namely scenarios_AODV-DES-1, scenarios_DSR-DES-1, scenarios_GRP-DES-1, scenar-ios_OLSR-DES-1 and scenarios_TORAV-DES-1 (as shown above in Fig 7), and then the result is analyzed. Also the Table 4 shows their average, maximum and minimum values.

A. Wireless LAN Delay

This is the first and essential performance metric considered in this paper to measure the performance of the network. All the WLAN nodes in the network have the wireless LAN MACs whose packets receives end to end delay and forward it to the higher layer. Wireless LAN delay is the performance metric that signifies this whole process.

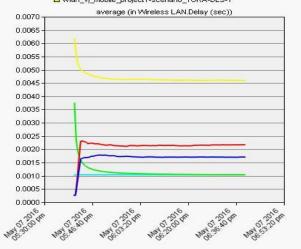


Fig. 16 Average Wireless LAN Delay

As seen in Fig. 15 and Fig. 16, OLSR has least average delay while GRP is the second most protocol that has less average delay among other protocols that are AODV, TORA and DSR.

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

Performance Assessment of Routing Protocols in Ad Hoc Network with Impression of Ad Hoc Cloud and Internet of Things

The reason being OLSR is a proactive type of protocol which is designed for mobile ad hoc networks and this protocol distributes topology information over entire network whereas GRP is position based hybrid routing protocol that divide networks into zones and it transmits the messages to geographic location in the place of network address. TORA has the maximum average delay among these five protocols followed by DSR. The reason is that TORA is a source initiated on demand routing protocol whose main objective is to limit control message propagation in the highly dynamic mobile computing environment and thus can have multi path routing without loop as information could not sent from bottom up approach whereas the working behavior of DSR is more or less alike to AODV like it forms a path only when it is required and uses the two main mechanism, "route discovery" and "route maintenance". Source routing is used instead of routing table at each neighbor node. AODV has a medium average delay as compared with other four protocols. Since OLSR has lowest average delay so is concluded that performance of OLSR is better than other routing protocol with respect to average delay in this network.

B. Network Load

This static is the second essential performance metric considered for performance evaluation in this paper. It is dimensioned statics as it measures the separate network load for each Basic Server Set (BSS) and represents whole WLAN BSS overall data traffic in terms of bits/sec.

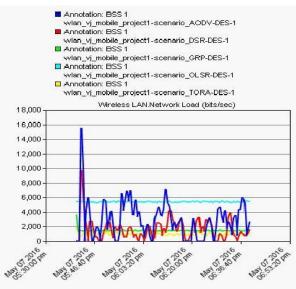


Fig. 17 Network Load of Wireless LAN in BSS1 (As is)

Fig. 17 and Fig. 19 just shows network load of wireless LAN in BSS1 and BSS2 respectively however according to Fig. 18 and Fig. 20, it is observed that average network load (BSS1 and BSS2) are least for TORA followed by GRP and DSR while OLSR have the highest average network load followed by AODV. However AODV start with a minimum value of 0 but reaches the maximum value of 15509 bits/Sec (for BSS1) and 19223 bits/Sec (for BSS2) maintaining the average of 2674 bits/Sec (BSS1) and 3634 bits/Sec (BSS2). OLSR is stable as compared to other protocol but have the highest average network load as it is a proactive type of protocol which is designed for mobile ad hoc networks and this protocol distributes topology information over entire

network. This concludes that TORA has lowest average network load.

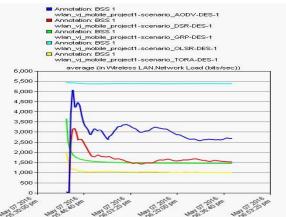


Fig. 18 Average Wireless LAN Network Load BSS1

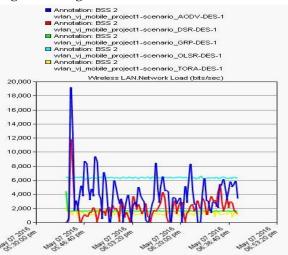


Fig. 19 Network Load of Wireless LAN in BSS2 (As is)

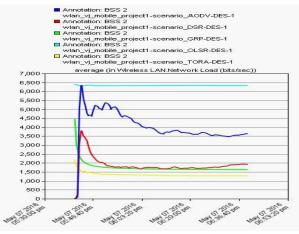
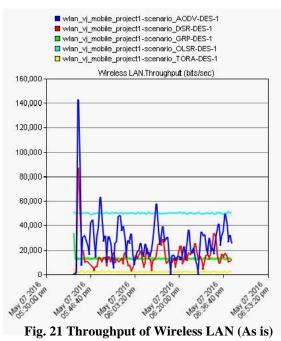
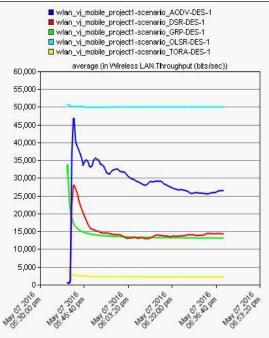


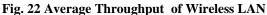
Fig. 20 Average Network Load of Wireless LAN in BSS2

C. Throughput

Throughput is third and most important performance metric that is considered for measuring the performance of the network. It is significant as it measures how much data actually travel within network from wireless LAN layers to higher layers in bits/sec.




Retrieval Number F8319088619/2019©BEIESP DOI: 10.35940/ijeat.F8319.088619 Journal Website: <u>www.ijeat.org</u>


1089

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

As seen in Fig. 21 and Fig. 22, OLSR has the highest average throughput, followed by AODV and DSR. TORA has the lowest average throughput, followed by GRP. However AODV starts with minimum throughput value of 0 bits/Sec and rises to maximum value of 143065 bits/Sec but average throughput is 26468 bits/Sec that is lower than OLSR that have the highest average of 49,985 bits/Sec. OLSR is stable as compared to other protocols as it is a proactive type of protocol which is designed for mobile ad hoc networks and this protocol distributes topology information over entire network. However, AODV incorporates the advantage of two main mechanisms that is "route discovery" and "route maintenance" and also uses sequence number, the hop by hop routing and periodic beacons. Based on the results, it is observed that OLSR has the highest average throughput. Table II lists the results that show, OLSR gives high

throughput and less delay, however TORA gives lowest network load as compared to other protocols.

VI. CONCLUSION

This paper is a study based simulation and experimental paper. In this paper, an outline of the present and future interrelated technologies are given, a study is done to identify the important and most effective parameters, metrics, factors and issues of Ad hoc Network and then simulation and implementation of five protocols and their comparison are done using important parameter metrics identified in this study for wireless fixed and mobile nodes in Ad Hoc Network. Such a comparative study provides help to network operator and mobile application developers to make decisions on selecting the suitable routing protocols to optimize the network performance that helps to enhance the end user experience. The simulation results indicate that OLSR is the optimal performance protocol as compared to AODV, OLSR, DSR and GRP for the proposed simulation environment. Table 4 Summery of Simulation Result

Future enhancement of this work will be to simulate the same protocol in multi-hop network in the Ad Hoc cloud network so as check the performance of these protocols in the

	Delay of Wirele	ss LAN in terms of	sec					
Protocol	Average	Maximum	Minimum					
AODV	0.0017095	0.0034195	0.0002688					
DSR	0.0021693	0.0049861	0.0002688					
TORA	0.0045971	0.0061866	0.0043587					
OLSR	0.0010409	0.0010614	0.0010264					
GRP	0.0010376	0.0037581	0.0009911					
Network	Network Load of Wireless LAN in BSS1 in terms of bits/sec							
Protocol	Average	Maximum	Minimum					
AODV	2,674	15,509	0					
DSR	1,523.2	9,726.2	0.0					
TORA	1,005.9	1,968.0	640.0					
OLSR	5,379.6	5,525.3	5,226.7					
GRP	1,444.6	3,663.6	1,368.9					
Network Load of Wireless LAN in BSS2 in terms of bits/sec								
Protocol	Average	Maximum	Minimum					
AODV	3,634	19,228	0					
DSR	1,923	11,831	0					
TORA	1,277.8	2,180.4	720.0					
OLSR	6,327.1	6,609.8	6,101.3					
GRP	1,629.2	4,449.3	1,540.0					
Throughput of Wireless LAN in terms of bits/sec								
Protocol	Average	Maximum	Minimum					
AODV	26,468	143,065	0					
DSR	14,279	87,554	184					
TORA	2,156.5	4,408.0	1,573.3					
OLSR	49,985	51,298	48,661					
GRP	13,102	33,770	12,418					

Ad hoc cloud environment and it would be important to increase the utilization of the underutilized resources or infrastructure of an organization. Further enhancement can be done by combining the IoT to these technologies so that prediction can be done based on the analysis and this will help to design smart technologies and smart cities.

Retrieval Number F8319088619/2019©BEIESP DOI: 10.35940/ijeat.F8319.088619 Journal Website: www.ijeat.org

Published By:

& Sciences Publication

Blue Eyes Intelligence Engineering

Performance Assessment of Routing Protocols in Ad Hoc Network with Impression of Ad Hoc Cloud and Internet of Things

REFERENCES

- Singh V.L., Rai D. (2018) Performance Comparison Simulation Model of Ad Hoc Cloud Network with Cloud Servers. In: Woungang I., Dhurandher S. (eds) International Conference on Wireless, Intelligent, and Distributed Environment for Communication. WIDECOM 2018. Lecture Notes on Data Engineering and Communications Technologies, vol 18. Springer, Cham.
- Singh V., Rai D., Simulation of Network with Cloud Servers Using OPNET Modeler, International Journal of Advance Research and Innovation, 2017, 5(3),p. 315-319.
- Singh V.L., Rai D. (2019) Experimental Performance Evaluation of Cloud Servers in Ad Hoc Cloud Network. In: Ray K., Sharan S., Rawat S., Jain S., Srivastava S., Bandyopadhyay A. (eds) Engineering Vibration, Communication and Information Processing. Lecture Notes in Electrical Engineering, vol 478. Springer, Singapore
- G. Kirby, A. Dearle, A. Macdonald and A. Fernandes, "An approach to ad hoc cloud computing," University of St Andrews, whitepaper, 2010.
- S. Madakam, R. Ramaswamy and S. Tripathi, "Internet of Things (IoT): A literature review," Journal of Computer and Communications, vol.3, no.05, p.164, May 2015.
- A. Zanella , N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, "Internet of things for smart cities," IEEE Internet of Things journal, vol. 1, no. 1, pp. 22-32, Feb 2014.
- Jyoti Raju, and J. J. Garcia Luna Aceves, "A comparison of on-demand and table driven routing for ad-hoc wireless networks," Communications, 2000. ICC 2000. 2000 IEEE International Conference on. vol. 3. IEEE, 2000.
- Dmitri D Perkins, Herman D. Hughes, and Charles B. Owen., "Factors affecting the performance of ad hoc networks," Communications, 2002. ICC 2002. IEEE International Conference on. vol. 4. IEEE, 2002.
- HuiYao Zhang, John Homer, Garry Einicke and Kurt Ku-bik, "Performance comparison and analysis of voice communication over ad hoc network," in Proc. 1st Australian Conference on Wireless Broadband and Ultra Wideband Communications (AusWireless 06), 2006.
- Abdul Hadi Abd Rahman and Zuriati Ahmad Zukarnain, "Performance comparison of AODV, DSDV and I-DSDV routing protocols in mobile ad hoc networks," European Journal of Scientific Research, vol. 31, no. 4, pp. 566-576, 2009.
- Ahmed A. Radwan, Tarek M. Mahmoud and Essam H.Houssein, "Performance Measurement of Some Mobile Ad Hoc Network Routing Protocols", International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011.
- 12. G. Kioumourtzis, C. Bouras and A. Gkamas, "Performance evaluation of ad hoc routing protocols for military communications", Int. J. Network Mgmt, vol. 22, no. 3, pp. 216-234, 2012.
- Vikas Goyal, Shaveta Rani, and Paramjit Singh. "Performance Investigation of Routing Protocols for Database and Voice Data in MANETS.", International journal of Emerging Trends and Technology in Computer Science, vol. 2, Issue 4, 2013.
- 14. Muhammad Asif Mehmood, Ahmed Mateen Buttar, and Muhammad Ashraf. "Experimental based Performance Analysis of Proactive OLSR, Reactive TORA and Hybrid GRP Routing Protocols in MANET," Int. J. Comput. Appl, vol. 89, No.15, 2014.
- Gayatree Rana, Bikram Ballav, and Binod Kumar Pattanayak, "Performance Analysis of Routing Protocols in Mobile Ad Hoc Network," International Conference on Information Technology (ICIT). IEEE, 2015.
- 16. Adel Aneiba and Mohammed Melad. "Performance Evaluation of AODV, DSR, OLSR, and GRP MANET Routing Protocols Using OPNET," International Journal of Future Computer and Communication, vol. 5, no. 1, 2016.
- MR Christhu, N Marium, J Major and D Shibin, "A comprehensive overview on different network simulators," International journal of engineering and technology (IJET), vol. 5, no. 1, pp. 325-32, Feb. 2013.

AUTHORS PROFILE

Ms. Vijaya Lakshmi Singh is a qualified Assistant Professor with more than 9 years of Industrial and Teaching experience. She is MCA, M.Sc. (Mathematics Honors), M.Tech (CSE) qualified and pursuing Ph.D. in Computer Science and Engineering from Ansal University. She started her career as a Project Assistant level II in Instrumentation Division

Retrieval Number F8319088619/2019©BEIESP DOI: 10.35940/ijeat.F8319.088619 Journal Website: <u>www.ijeat.org</u> of Central Institute of Mining & Fuel Research (CSIR, GoI). Then moved to the academics and joined Ansal Institute of Technology (GGSIPU) in 2010. She is associated with Ansal University since 2012.Her interdisciplinary research exposure span over Ad Hoc Network and Cloud Computing. She has attended various International and National conferences and workshop. She has published 16 research papers in national and international journals of repute and in the proceedings of IEEE and SPRINGER.

Dr. Dinesh Rai Dr. Dinesh Rai is Associate Professor in Ansal University .He is a Ph.D. in network security and is associated with Ansal University for more than ten years. He completed his Master's in Computer Technology from National Institute of Technology, Raipur in 2003. Before that he did M.Sc. in Computer Science and B.Sc. (Math

and Computer Science) from Jiwaji University Gwalior. Prior to joining Ansal University, he worked as Asstt. Prof. at Dronachraya College of Engineering, Gurgaon and GLA Institute of Technology, Mathura as Lecturer and Senior Lecturer. Dr. Rai has published his research work in good journal and presented some papers in international conferences. His current research interest is in the area of Cloud computing and Data sciences. Two of the projects done by him are still being used. One (named Quarterly Tax Plan System) at Transport Commissioner Office, M.P. and Other in KR Govt. Hospital, Gwalior. He guided students of B. Tech (CSE) (now Alumni) on project 'E-Gas Sewa' to participate and won prize in IBM contest "The Great Mind Challenge." He has also got Best Innovative practitioner award by Wipro mission10x.He has got very keen interest in literature and cultural activities. He has got consolation prize in National Debate competition held by ISKCON, and won the University debate competition held in Jiwaji University Gwalior. Some of his Hindi Poems and stories have been published in reputed newspapers like 'Dainik Bhaskar' and college magazines. At Ansal University, Dr. Dinesh Rai has been working as an Associate Professor and teaching subjects like C- Programming, DBMS, Data Structures, ADA, Operating System and Theory of computation. Apart from teaching, Dr. Rai takes part in different activities held at college campus. He has written and directed 8 street plays for Ansal University annual fest and other competitions.

Published By: Blue Eyes Intelligence Engineering & Sciences Publication