
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

1037

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8288088619/2019©BEIESP
DOI: 10.35940/ijeat.F8288.088619
Journal Website: www.ijeat.org

 Abstract: This paper presents the modulo multiplication
technique in residue number system (RNS) using Vedic
mathematics. Residue number system supports fast mathematsical
computation. In this paper, the use of the combination of RNS and
Vedic mathematics has improved the computation time for modulo
multiplication operation. The proposed modulo multiplier is
implemented in VHDL and synthesized using Xilinx ISE 14.1.The
performance comparison analysis in terms of area, power and
delay is done between the proposed technique and direct
computation. The performance of the multiplier circuit has been
compared using the 32 nm standard cells available in Synopsys
Design Compiler. The presented Vedic modulo multiplier is
efficient in terms of speed for large input data sizes.

Index Terms: HDL design, Vedic mathematics, residue number
system (RNS), lookup table (LUT), modular multiplication

I. INTRODUCTION

High-speed multiplier is necessity in all multiplication
operation, including digital signal processing, image
processing and others. Therefore, a lot of focus has been put
on the development of area efficient and fast multipliers.
Vedic multiplier [1], [2] is considered as one of the most
efficient binary multipliers because of its modular approach.
The architecture of a Vedic multiplier is based on the vertical
and crosswise algorithm of the ancient Indian Vedic
mathematics.Residue number system (RNS) [3] is a
non-weighted number system. The parallel nature for the
mathematical operations in RNS results in a faster
computation. In RNS, an integer number is represented as a
set of residues, and these residues are processed separately. In
this paper, the Vedic multiplication technique proposed in [2]
has been applied on RNS, which avoided the requirement of
larger sized multiplier units. The organization of this paper is
as follows: Section II presents the analysis and design for the
Vedic-based multiplication operation in RNS domain.
Section III deals with the design strategies for different
moduli set. Section IV compares the proposed modular
multiplication technique with the direct computation method.
Finally, the conclusions are drawn in Section V.

Revised Manuscript Received on October 30, 2019.

* Correspondence Author
Tukur Gupta*, Ph.D. Scholar, Department of Electronics and

Communication Engineering (ECE), Jaypee Institute of Information
Technology, NOIDA, India

Shamim Akhter, Assistant Professor, Department of ECE, Jaypee
Institute of Information Technology, NOIDA, India

Shaheen Khan, Assistant Professor, Department of ECE, Mewat
Engineering College (Waqf), Haryana, India

Saurabh Chaturvedi, Assistant Professor, Department of ECE, Jaypee
Institute of Information Technology, NOIDA, India

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

II. VEDIC-BASED MULTIPLICATION IN RNS

Modulo multiplication of two inputs X and Y in RNS is
represented by |X.Y|m, where m is the modulo number. Direct
computation requires a multiplier to compute X.Y followed
by mod-m operation to obtain the final result. The
implementation of a multiplier circuit demands a large
hardware in terms of logic gates. The computation of mod-m
requires a lookup table (LUT), where the address size of an
LUT is related to the number of bits in the input data. As an
example, for 8-bit multiplication, an LUT requires 16-bit
address. The LUT content width is decided by the value of
moduli set m. The requirements of multiplier and respective
LUT size for direct modulo multiplication are given in
Table I.

Table I. Multiplier and LUT requirements for m = 7

No. of input bits
(N)

Multiplier size
(bits)

LUT address size
(bits)

4 4×4 8

8 8×8 16

16 16×16 32

32 32×32 64

In this paper, the multiplication based on Vedic

mathematics is proposed to reduce the requirements of
multiplier and LUT. In the proposed approach, the input bits
are divided into two equal parts, i.e. for N×N multiplication,
divide the multiplicand and multiplier into two parts,
consisting of (N to N/2+1) bits and (N/2 to 1) bits. As shown
in Fig. 1, input data X and Y are divided as XMXL and YMYL.
Thereafter, mod-m is computed for all the four subdivided
parts followed by Vedic-based cross product computation.

|XM|m |XL|m

 ×
 |YM|m |YL|m

 |XM|m |YL|m |XL|m |YL|m

 |XM|m |YM |m |YM |m |XL |m

Fig. 1. Vedic-Based Cross Product Computation.

For an example, with m = 7, the modulo of an input can be

represented using maximum of 3 bits. As depicted in Fig. 1,
with m = 7, the subdivided parts are multiplied using a small
sized multiplier because each input to the multiplier is of 3
bits.

Multiplication Technique in Residue Number System

Tukur Gupta, Shamim Akhter, Shaheen Khan, Saurabh Chaturvedi

XM XL

YMYL

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.F8288.088619&domain=www.ijeat.org

Multiplication Technique in Residue Number System

1038

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8288088619/2019©BEIESP
DOI: 10.35940/ijeat.F8288.088619
Journal Website: www.ijeat.org

The complete block diagram of the proposed architecture
is demonstrated in Fig. 2 for m = 7. The partial products after
Vedic multiplication followed by mod-7 are shown as: P3, P2,
P1 and P0. The value of P1 and P2 is shifted by 1-bit and that of
P3 by 2-bit. This is because of the fact that the divided
subparts are multiples of 16, therefore a factor of 2 is taken to
compensate for the factor of |16|7, i.e. 2, for P1 and P2.
Similarly, for P3, a factor of 4 is taken to compensate for
|256|7, i.e. 4.

Fig. 2. Proposed RNS domain Multiplier for m = 7.

As an example, if input A = 10111111, then subdivided
parts will be: AM = 1011 and AL = 1111. Similarly, if
B = 11101001, then BM = 1110 and BL = 1001. These values
are given to mod-7 calculator (in this case m = 7) as inputs.

 Fig. 3 displays the architecture of the mod-7 calculator [3],
and it can be extended to any modulo number with a
modification in LUT size, contents and modulo adder.

Fig. 3. Mod-7 calculator [3]

For 8-bit modulo multiplication, the subdivided parts of A
and B are of 4-bit each, therefore LUT has only four address
locations. The LUT contents for m = 7 are listed in Table II.

Table II. LUT Contents For Mod-7 For 4-Bit Input Data

LUT address LUT contents

00 001

01 010

10 100

11 001

As discussed in [3] and shown in Fig. 3, the LUT contents

are derived based on value of |2j|m, where j varies from 0 to 3
for m = 7. The value of input data sequence selects either the
LUT content or ‘0’ using a 2×1 multiplexer. For an example,
consider the computation of |BL|7 with BL = 1001, the
sequence of data out from the multiplexer will be:

 001 = > 000 => 000 => 001

The extracted value from the multiplexer is recursively
used in the modulo-7 adder [3]. The modulo-m adder
produces |A+B|m. For this example, the result of iteration is
given below, with an assumption that the accumulator is
initially clear.

 |000 + 001|7 => 001
 |001 + 000|7 => 001
 |001 + 000|7 => 001
 |001 + 001|7 => 010

The final result is 010 which is 2 in decimal, and it
represents the value of |BL|7, i.e. |9|7 = 2. Various architectures
of modulo-m calculator and adder are presented in [4]-[7].
The block diagram of a 4-bit modified Vedic multiplier is
discussed in [2] and shown in Fig. 4 with the inputs A and B.
This architecture requires four 2-bit binary multipliers, a
carry save adder (CSA), an OR gate and a 2-bit
increment-by-one (IBO) circuit. The outputs from the 2-bit
multiplier are indexed from P15 to P0. The final multiplication
result is available at S7S6…..S1S0.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

1039

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8288088619/2019©BEIESP
DOI: 10.35940/ijeat.F8288.088619
Journal Website: www.ijeat.org

Fig. 4. Generalized block diagram for 4-bit modified

Vedic multiplier

As shown in Fig. 2, the divided parts are of 4-bit each for
an 8-bit multiplication. The mod-7 calculator gives 3-bit data
because the values are less than 7. The output of mod-7 needs
to be multiplied, therefore A3 and B3 are always ‘0’ for the
last input bit of each data of the 4-bit Vedic multiplier. The
multiplication operation between A3A2 and B3B2 is reduced
to ANDing of A2 and B2 at P12 and the terms P13, P14 and P15
are ‘0’. Moreover, the multiplication output from each Vedic
multiplier block is limited to the maximum value of 36, so the
result can be accommodated in S5S4S3S2S1S0. Therefore, the
OR gate and 2-bit IBO circuit can be removed. Similarly, the
requirements for hardware optimization can be analyzed for
other modulo numbers. As depicted in Fig. 2, the extracted
6-bit output from all the four Vedic multipliers is provided to
mod-7 calculator. It produces P3, P2, P1 and P0 corresponding
to mod-7 value. The value of P1 and P2 is added using a
mod-7 adder, shifted left by 1-bit and then again passed
through a mod-7 calculator. The obtained output is
represented as P5. Similarly, the value of P3 is shifted left by
2-bit and then mod-7 is computed and represented as P4.
Finally, the values of P0, P4 and P5 are added using a mod-7
adder to obtain the modulo multiplication result of |X.Y|m.
The proposed design is implemented in VHDL and

synthesized using the Virtex-4 ML-402 board from Xilinx
ISE 14.1.

III. DESIGN STRATEGIES FOR RNS VEDIC-BASED
MULTIPLIER FOR DIFFERENT MODULI

The design proposed in Section II can easily be extended
for larger input data sizes of multipliers (as a power of 2),
such as N = 16 and N = 32. When N = 16, the subdivided
parts will have the data size of 8-bit and the LUT should have
eight address lines. The details of address and corresponding
stored value in LUT are presented in Table III for 8-bit input
data.

Table III. LUT contents for mod-7 for 8-bit data size

LUT address LUT contents

000 001
001 010
010 100
011 001
100 010
101 100

110 001
111 010

The multiplier design proposed for m = 7 in Fig. 2 needs to

be modified to work for other modulo numbers. The
suggested modifications are shown in Table IV for different
values of m and N.

Table IV. Suggested Modifications In The Proposed

Design For Other Modulo Numbers

Mod
(m)

Input data
size (N)

Hardware requirements

3

N = 4, 8, 16, 32

2-bit multiplier, no need of
shifting in middle and left stages
w.r.t. Fig. 2

5

 N = 4

2-bit multiplier, needs shifting
left by 2-bit in middle stage and
no shifting in left stage w.r.t. Fig.
2

N = 8, 16, 32 Vedic multiplier of 4-bit, no need
of shifting in middle and left
stages w.r.t. Fig. 2

7

N = 8 or 32

N = 16

Vedic multiplier of 4-bit, needs
shifting left by 1-bit in middle
stage and 2-bit in left stage w.r.t.
Fig. 2

 Needs shifting left by 2-bit in
middle stage and 1-bit in left
stage w.r.t. Fig. 2

The simulation results for the mod-7 modulo multiplier for

N = 8, 16 and 32 are exhibited in Fig. 5. The design is tested
by using different set of input data. The input and output
signal values are represented in integer inside the waveform
window for clarity.

http://www.ijeat.org/

Multiplication Technique in Residue Number System

1040

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8288088619/2019©BEIESP
DOI: 10.35940/ijeat.F8288.088619
Journal Website: www.ijeat.org

(a)

(
(b)

 (c)
Fig. 5. Simulation results of modulo multiplier for m = 7: (a) N = 8, (b) N = 16 and (c) N = 32.

IV. COMPARATIVE ANALYSIS

The binary adder is used as a fundamental building block
in all the designs, including modulo adder, modulo calculator
and Vedic multiplier. The basic ripple carry adder and carry
look-ahead adder circuits are used in this work to compare
the modulo multiplier architectures. Nonetheless, the
synthesis results can be improved by using the advanced
adders reported in [8]-[13]. The synthesis results of the
proposed multiplication technique are compared with the
direct computation using the Xilinx Virtex-4 ML-402 FPGA
board. For direct modulo multiplication, the Vedic multiplier
is used followed by the respective mod-7 calculator. In the
work presented, this method is termed as Direct-I. In
addition, the computation of |A.B|m can be done by first
computing |A|m and |B|m and then computing mod-m of the
product of |A|m and |B|m. This method is termed as Direct-II.

Table V. Comparison Of Modulo Multipliers For Mod-7.

Input data
size (N)

Technique
No. of
slices

No. of
LUTs

Delay
(ns)

8
Proposed
Direct-I
Direct-II

79

113
59

143
202
106

12.96
15.63
16.02

16

Proposed
Direct-I
Direct-II

167
486
54

299
856
104

15.51
28.58
22.82

32

Proposed
Direct-I
Direct-II

151
1905
137

287
3341
262

18.81
53.78
27.08

The performance comparison has also been done in terms

of area, delay and power using the 32 nm standard cell library
in Synopsys Design Compiler. Table VI presents the
comparative analysis for the high voltage threshold (HVT)
library.

Table VI. Performance Comparison Using the 32 Nm
HVT Standard Cell Library

Input data
size (N)

Technique
Area
(μm2)

Delay
(ns)

Power
(μW)

8
Proposed
Direct-I
Direct-II

6802
3075
2717

6.14
7.22
5.96

280
188
131

16
Proposed
Direct-I
Direct-II

8607
9452
4526

7.99
14.7
9.71

470
655
285

32
Proposed
Direct-I
Direct-II

12242
33088
8156

11.75
29.67
17.19

830
2212
670

It can be observed that as the input data size increases, the

proposed methodology for the modular multiplication is
more efficient than the direct computation methods.

V. CONCLUSION

An efficient modulo multiplier based on Vedic mathmatics
is proposed in this paper. A detailed design analysis is
presented for mod-7 modulo multiplier for the input data
sizes of 8, 16 and 32 bits. The design process can be extended
for other modulo values after making the modifications
suggested in Table IV. The proposed design is compared with
direct computation, and the comparison results are presented
in Tables V and VI. It can be inferred that the proposed
design is efficient in terms of delay when the input data size is
large, irrespective of the design plateforms, such as FPGA
and standard cell. Furthermore, the use of different
architectures of adders, including carry save adder, square
root carry select adder and modified square root carry select
adder, may be proposed for future work.

REFERENCES

1. S. Akhter, “VHDL implementation of fast N×N multiplier based on

Vedic mathematics,” in Proc. 18th European Conference on Circuit
Theory and Design, 2007, pp. 472-475.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

1041

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F8288088619/2019©BEIESP
DOI: 10.35940/ijeat.F8288.088619
Journal Website: www.ijeat.org

2. S. Akhter and S. Chaturvedi, “Modified binary multiplier circuit based
on Vedic mathematics,” in Proc. IEEE 2019 International Conference
on Signal Processing and Integrated Networks, 2019, pp. 234-237.

3. A. Omondi and B. Premkumar, Residue number systems: Theory and
implementation, 1st ed. London: Imperial College Press, 2007.

4. A. A. Hiasat, “General modular adder designs for residue number
system applications,” IET Circuits, Devices & Systems, vol. 12, no. 4,

pp. 424-431, Aug. 2018.
5. A. A. Hiasat, “High-speed and reduced-area modular adder structures

for RNS,” IEEE Transactions on Computers, vol. 51, no. 1, pp. 84-89,
Jan. 2002.

6. S. Akhter, G. Raturi, and S. Khan, “Analysis and design of residue

number system based building blocks,” in Proc. IEEE 2018
International Conference on Signal Processing and Integrated
Networks, 2018, pp. 441-445.

7. T. Gupta, S. Akhter, A. Srivastava, and S. Chaturvedi, “HDL
implementation of five moduli residue number system,” International

Journal of Innovative Technology and Exploring Engineering, vol. 8,
no. 9, pp. 689-693, Jul. 2019.

8. S. Akhter, S. Chaturvedi, and K. Pardhasardi, “CMOS implementation

of efficient 16-bit square root carry-select adder,” in Proc. IEEE 2015
International Conference on Signal Processing and Integrated
Networks, 2015, pp. 891-896.

9. B. Ramkumar and H. M. Kittur, “Low-power and area-efficient carry
select adder,” IEEE Transactions on Very Large Scale Integration

Systems, vol. 20, no. 2, pp. 371-375, Feb. 2012.
10. G. Singh, “Design of low area and low power modified 32-bit square root

carry select adder,” International Journal of Engineering Research and
General Science, vol. 2, no. 4, pp. 422-431, Jun. 2014.

11. Y. He, C.-H. Chang, and J. Gu “An area efficient 64-bit square root
carry-select adder for low power applications,” in Proc. IEEE 2005
International Symposium on Circuits and Systems, 2005, pp.
4082-4085.

12. V. Kokilavani, K. Preethi, and P. Balasubramanian, “FPGA-based
synthesis of high-speed hybrid carry select adders,” Advances in
Electronics, vol. 2015, pp. 1-13, 2015.

13. S. Akhter, V. Saini, and J. Saini, “Analysis of Vedic multiplier using
various adder topologies,” in Proc. IEEE 2017 International
Conference on Signal Processing and Integrated Networks, 2017, pp.
173-176.

AUTHORS PROFILE

Tukur Gupta received her B.Tech. in Electronics and
Communication Engineering (ECE) from the Gautam
Buddha Technical University (Formerly, Uttar Pradesh
Technical University, Lucknow) in 2010 and M.Tech. in
Microelectronics and Embedded Technology from
Jaypee Institute of Information Technology (JIIT),
NOIDA in 2015. She is currently pursuing Ph.D. in VLSI
Design from JIIT, NOIDA. She has 6 years of industrial

and teaching experience. Her research interests include VLSI design and
low-power design.

 Shaheen Khan obtained his B.Tech. and
M.Tech. degrees in ECE from ITM, Gurgaon, India
and RV University, Udaipur, India in 2001 and 2006,
respectively. He is currently pursuing his Ph.D. degree
from Jamia Millia Islamia, New Delhi, India. His
research area includes digital system design and signal

processing. He is a Life Member of IETE.

 Shamim Akhter did B.Tech. (ECE) from AMU,
Aligarh (2001), M.Tech. (VLSI) from IIT Delhi (2003)
and Ph.D. from JIIT NOIDA (2015). His research
interest is VLSI signal processing.

 Saurabh Chaturvedi obtained his B.Tech. degree in
ECE from JIIT, NOIDA in 2005, M.Tech. degree in
VLSI Design from the Guru Gobind Singh Indraprastha
University, Delhi, India in 2008 and Ph.D. degree from
the University of Johannesburg, South Africa in 2018. He
is a Senior Member of IEEE.

http://www.ijeat.org/

