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Abstract: Prediction of Tunnel support pressure up to an accurate
and rdiable degreeis difficult, but of utmogt importance Empirical models
are available with different set of parameters mostly are basad on the rock
dassfication parameters A feed forward neural network based
predictive models from the data collected from literature for the
Himalayan tunnels have been developed. The input variables in
the developed neural network models were depth of over burden,
radius of tunnd, normalisad dosure The fourth input variable was rock
mass quality or rock mass number or rock mass rating. The
output was a support pressure. Sensitivity analysis relating the
variables affecting the support pressure has been performed. The
developed neural network models were compared with models
developed based on the multiple linear regression analysis as well
as with empirical models already available in literature. Finally,
model equations have been presented based on the connection
weight.

Keywords: Tunnd support pressure ANN; MVLRA; Sendtivity
Analyss Rock dassfication parameters.

I. INTRODUCTION

Support pressure in tunnels governs the design of support
system to be provided. Therefore, its prediction is of utmost
importance. Various theoretical and empirical models

are available in literature to compute the support
pressure in tunnels in squeezing and non-squeezing ground
conditions. These models were developed based on certain
assumptions. Unlike the theoretical and empirical models,
artificial neural network model do not use any prior
assumptions due to its capability to learn from the experience
and to understand inherent relationship among the variables,
which makes artificial neural network a better choice for
predicting the support pressure in tunnels. Researchers
(Alipour et a. [2]; Mohamed et al. [3]; Yeh [4]) have shown
that artificial neural network were efficient in predicting the
complex rock behavior and provided the solutions to
problems related to various tunneling operation. With the
above in view, in the present study, a feed forward neura
network based predictive models from the data collected
from literature for the Himaayan tunnels have been
developed. The input variables in the developed neural
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network models were depth of over burden (D), rediusof tunnd
(R), normdisad closure (u). The fourth input variable wasrock mass
quality (Q) or rock mass number (N) or rock mass rating
(RMR). The output was a support pressure. Sensitivity
analysis relating the variables affecting the support pressure
has been performed. A comparison of the developed neura
network models is made with the already available modelsin
literature. Finally, model equations have been presented
based on the connection weight.

[I. DATA USED

The datareported by Goel et a. [1] for the devel opment of
the artificial neural network model were used consisting of
data from 25 tunnel sections in sgueezing and non-squeezing
ground conditions with width varying from 2 m to 14 m. For
training the artificial neural network, data from 18 tunnels
sections were chosen randomly, and the remaining data were
used for the testing purpose. For tunnel sections in
non-sgqueezing ground conditions, the normalized closure
was taken as 0. The data used for the training and testing
purposes are presented separately in the Table 1 and Table 2
respectively.

Table 1 Data SetsUsed For Training Of Various

Models
Sr. Name of Q N RMR  R(m) D(m)  u(%) Pos
No. tunnel (MPa)
1 Chhibro-Khodri ~ 0.05 038 1400 150 28000 280 031
2 Giri-Bata 012 060 2000 230 24000 550 017
3 ManeriStage-ll  0.80 400 3500 125 48000 250 017
4 Maneri 0.18 090 2400 350 41000 300 029
Stage-lll
5 Chhibro-Khodri ~ 0.05 050 1400 450 68000 600 108
6 Chhibro-Khodri ~ 0.02 0.11 1300 450 28000 200 115
7 Maneri Stage-| 360 900 5100 290 22500 000 006
8 Maneri Stage-| 450 1200 5500 290 55000 000 008
9 Maneri Stage-| 040 200 3500 290 30000 000 015
10 Khara 040 200 3500 300 15000 000 011
11 Khara 040 200 3000 300 2000 000 015
12 Lakhwar 850 2125 6100 300 25000 000 005
13 ManeriStagelll 084 420 4000 350 17500 000 008
14 ManeriStagelll 271 700 5000 350 25000 000 007
15 Salal 110 300 4100 600 15000 000 011
16 Tehri 0.80 350 4200 600 22000 000 013
17 UpperKrishna 1500 7500 6800 650 3400 000 0.02
18 Lakhwar 850 2125 6100 700 25000 000 005

Table 2 Data Sets Used For Testing Of Various Models

St Name of Q N RMR Rm) D(m) u®) P
No. tunnel (MPa)
1 Chhibro-Khodri ~ 0.02 011 1300 150 28000 450 032
2 Giri-Bata 051 2.55 3500 230 38000 7.60 0.20
3 Loktak 0.02 0.17 1500 230 30000 7.00 054
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4 ManeriStage-l ~ 0.50 375 4000 290 35000 790 020
5 ManeriStage-ll 057 250 3800 350 20000 000 010
6 Tehri 600 1500 5900 600 30000 000 006
7 UpperKrishna 1500 3750 6500 650 5200 000 003

I11. NEURAL NETWORK MODEL

In order to develop three alternate neural network models,
and to compare the relative importance of three parameters
Q, N and RMR, three separate input variable data sets were
chosen. Thefirst dataset containsfour parameters such as Q,
depth of overburden (D), radius of tunnel (R), and normalized
closure (u). The second and third data set also contains four
parameters. Only Q and RMR was replaced with N keeping
other parameters same. These three models are designated as
Q-model, N-model and RMR-model in the text of this paper.
Support pressure was the output in all the three models.
Optimal Neural Network Models Selection

The architecture of a multi-layer feed-forward neura
network model affectsthe output, and therefore some specific
number of hidden nodes and hidden layers are to be designed.
Boger and Guterman [5] have suggested that as a thumb rule
number of hidden layer neurons can be taken as 2/3 (70%) of
the number of the input variables in input layer. Blum [6]
have suggested that the number should be between the input
layer size and output size. Keeping the above in view, using
the thumb rule given by Boger and Guterman [5] 2/3 of 4
inputs, i.e. 3 number of hidden neurons were selected. A
similar approach has also been adopted by other researchers (
Dutta et a. [7]; Kurkoya[8] ; Ito [9] ). With single hidden
layer and 3 hidden neurons, initial random weights in the
range -1 to 1 were assigned. The next job is to identify the
optimum number of epochs for each model. As the
insufficiently trained model is inaccurate and heavily trained
model creates noise (Dutta et al. [7]) with trial and error the
optimum number of epochs were found. Optimality was
checked by calculating the mean squared error (MSE)
between the actual and the predicted support pressure. An
overfitting effect is observed when training was done beyond
the optimal point (Dutta et a . [7], Sarle [10]). Therefore
training was stopped beyond the optimal point in all the three
models. Based on the calculated mean squared error, with a
topology of 4-3-1 for each neura network model
corresponding to 600, 4000 and 600 number of epochs was
selected for Q-model, N-model and RMR-mode
respectively.

Activation Function Selection

The am of this work is to select the best activation
functions for hidden and output layer neurons of the neural
network. Thiswasdoneusing Agiel Neural Network, an open
source software. It supports various activation functions such
as linear, Threshold, Threshold symmetric, Sigmoid,
Sigmoid stepwise, Sigmoid symmetric, Gaussian, Gaussian
symmetric, Elliot, Elliot symmetric, Linear piece, Linear
piece symmetric, Sin symmetric, Cos symmetric, Sin, and
Cos. Activation function governs the output of a neuron
corresponding to a given input, it scales the output into a
proper range and introduces nonlinearity. With an initial
random weight of -1 to 1, maximum error of 0.0001,
TRAIN_RPROP as the learning algorithm, and default
activation steepness of 0.5 for activation functions of hidden
and output neurons, al three models were tested for the
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above-mentioned activation functions with their respective
optimal epochs. Selection of a function was be made using
the mean squared error as the performance measure. Lesser
value of mean sguared error indicates better prediction.
Based on the mean squared error, it was found that all three
models gave best resultswith Elliot function. Therefore Elliot
function was selected as an activation function for both
hidden neurons and output neurons.
Performance Measures for Artificial
Models

Considering ‘Accuracy’ as the best performance measure,
along with corfficient of correlation (r) and coefficient of
determination (R?), mean square error (MSE) , root mean
sguare error (RM SE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) were calculated to
calculate the magnitude of the errors. Higher values of MSE,
RMSE, MAE and MAPE show less accurate predictions,
while the higher values of r and R? show more accurate
predictions. In genera practice, only r and R? are used to
predict the accuracy of a model, but for a better comparison
al the performance measures should be compared. RMSE
will aways remain less or equal to MAE. Further, when
RMSE equals MAE (both can vary from 0 to o), then all
errors would have the same magnitude. Table 3 presents the
mathematical expressions used to calculate these
performance measures. The performance measures for the
training of the three models are shown in Table 4.

Neural Network

Table 3 Various Statistical Parameters And Error
Models

Statistical parameter Mathematical expression

Correlation coefficient (r) — ZF4Fo- nFiFy

(m=1)8peTpg
Coefficient of determination Re=1 — DFmT AL
(R?) Lyirn- TR

Mean square error (MSE) MSE==E%, (Pt;— Pp)*

Root mean square error (RMSE) _ 2%a rpe_ .
RMSE_ﬂﬂzg_, (Pt;— Pp,)

Mean absolute error (MAE) MAE==X%, | Pt.— Fp|
L

Ft—Fpy

Py

Mean absolute percentage

MAPEzE 2.
error (MAPE)

]*100

Note: Ft, Pp : target and predicted tunnel support pressure respectively,
Fr, E : mean of the target and predicted tunnel support pressure
respectively, S, Spp : standard deviation of the target and predicted tunnel
support pressure respectively, n : number of observations

Table 4 Statistical ValuesFor Training And Testing
Data Sets For Three ANN M odels With Elliot Activation
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Function
Neural Statistical r R? MSE RMSE MAE MAPE
Network values for
Model the
Q-Model training 0924 0478 0024 0154 0121 110369
N-Model data 098 0937 0005 0068 0052 48041
RMR-model 0992 0894 0007 0081 0063 76377
Q-Model testing 0832 0058 0010 0098 0074 61761
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N-Model
RMR-model

data 0.990

0.940

0932
0.745

0.001
0.004

0.035
0.063

0.024
0.050

28829
49.772

Sudy of this table reved that best predictions were made by the
N-Modd having MSE of 0.0046. RMR-modd gave the second best
predictions with MSE of 0.0065 and the Q-modd gave the MSE of
0.0238 and wes a number threa  Further, modds should dso be
tested for their predictability with thetesting deta. For this, testing was
done usng the data of the remaining tunnd sections. Results of the
training and testing areshown in FHg. 1(a)., Fg. 1(b)., and Fg. 1(c). for
Q-modd, N-Modd and RMR-Modd respectively.
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Fig. 1 Training and Testing of (a) Q-model with Elliot
function (b) N-model with Elliot function (c) RMR-model
with Elliot function

Sengtivity Analyss
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In pagt many dudies ressarcher hes expressad
difference of opinion on the effect of parameter such asthesze of the
tunnel and depth of overburden on the support pressure. Kegping
this agpect in view, sengtivity andyss was peformed to determine
therdativeimportance (RI) of theinput varigbles

afecting the output. For the sengtivity andlys's, methods reported by
Garson [11] and Olden and Jackson [12] are available in literauture.
Former method is based upon the weights configuration, but it
mesaures the absolute vaues of the weights, and latter suggedts the
improvementsto overcome these limitation. Therefore, fallowing the
procedure given by the latter method, the sum of the product of the
find weights of the connection of the input neurons to the hidden
neurons with  the connection wight of the hidden neurons to the
output neurons for dl input neurons was caculated individuay for
each modd. The equation (1) usad for paforming the sengtivity
andysisisgivenbdow.

RI i =
D
Where,

Rl; isthe relative importance of the jth neuron of input layer;

h is the number of neurons in the hidden layer; w is the
connection weight between j"input variable and ki neuron of
the hidden layer; wy is the connection weight between ki"
neuron of hidden layer and the single output neuron.
The connection weights between the input neurons and hidden
neurons and those of the hidden neurons to the output neurons are
giveninthe Teble5, Table6, and Table 7 for @Q-modd, N-modd, and
RMR-modd respectively.

EH:Lu'jn' Wi

CIRMR

AR

[a]n]

Fig. 2 Relativeimportance of variousinput parameters of
(a) Q-Modée (b) N-Model (c) RMR-Model
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Table 5 Final connection weightsfor Q-model

Neuron Weights (wijk) Biases
Q RM DM  u®%) P bhi bo
Hidden neuron 1 3078 -2115 -1911 -3.054 -5591 2.037 4.975
(k=1)
Hidden neuron 2 2760 -3.206 -1.820 -0.626 -4872 2.093
(k=2)
Hidden neuron 3 2947 -2304 -1846 -2603 -5274 1.964
(k=3)
Table 6 Final connection weightsfor N-Model
Neuron Weights (wjk) Biases
N RM DM  u®%) P brc bo
Hidden 8.047 -15362 0475 0.675 -17.713 6.433 13589
neuron 1
(k=1)
Hidden 6.632 1.982 -3.067 -10816 -13.074 -0.033
neuron 2
(k=2)
Hidden 6.379 2.161 -2954  -10.779 -12.893 -0.168
neuron 3
(k=3)

Table 7 Final Connection Weights For RMR-Model

Neuron Weights (wj) Biases
RMR R(m) D(m) u(%) P bk by

Hidden neuron 6.770 -3.376 -1.530 -0.020 -7.983 1.008  8.750
1 (k=1)

Hidden neuron 5299 -2.178 -1.506 -0.890 -5.893  0.519

2 (k=2)

Hidden neuron 6.281 -3.190 -1.468 -0.056 -7.224 0.981

3 (k=3)

When rddive importance is pogtive it sgnifies thet the support
pressure increeses with the increese in the value of input parameter, if
negative, meansit decreases with the decrease in the vaue of theinput
parameter, when near to zero meansthat any variation intheinput has
lesseffect on the output (Duttaet d. [7]; Kim et . [13]). The obtained
relaiveimportance (RI) of the parameters of the respectivemodesare
shown in the Fg. 2. It can be inferred from these results that support
presure (P) is directly proportiond to R, D and u for the Q-modd
and N-modd, while inverdy proportiond to the vdue of Q and N.
Givento the physical meening of therock dassfication parametersQ
and N, it can be sad that support pressure decrease with the increese
in the value of these parameters Therefore, these results match with
physicd meening of the support pressure and its various parameters.
Als, support pressure increases when depth of the overburden and
Szedf thetunnd areincreasad. For the RMR-modd, support pressure
is directly proportiond to RMR, but inversdy proportiond to R, D
and u. These reaults are in disagreement with the empirica equetions
reported by researchers (Und [14]; Goel et al. [1]; God and Jethwa
[15]). The empiricd modds presented by the researchers (Und [14];
Godl et a. [1]; God and Jethwa[15]) have shown thet the support
pressure is directly proportiond to the Sze of the tunnel and depth of
the overburden wheress in the RMR-modd,  the rdaive importance
of the Sze of the tunnd and depth of the overburden is negative
sgnifying that these parameters are inverdy proportiond. Further, the
reative importance of the RMR was 431.207, which sgnifies thet
upport presure increases when RMR is increasad. It is contrary to
the physca meaning of the rock dlassfication parameter -RMR and
the available empiricd modds, in which support pressure decrease
with the increase in the RMR, because higher RMR sgnifiesagood
rock. Further, results of the sengtivity andys's dso depend upon the
accurecy of the available data, therefore an important parameter could
show lower relaiveimportanceif the dataisnot correct.

The comparison of the rdative dependance of the accuracy of the
modd s on the rock dassfication parameters, can essly be unerstood
by comparing the performance messures of the corresponding artifical
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neurd network modds. From Table 4, it can be seen that N-modd
performs better than the other two modes It has the codfficients of
determinations of 0.938 and 0.932 for the training and testing data.
The correspoding vaues for the Q-modd and RMR-modd are 0.478
& 0058 and 0894 and 0.745 regpectively. Other performance
meesures uch asM SE, RMSE, MAE and MAPE, dsoreved that for
both training and testing data, N-modd performed better then the
other two modds Theefore it can be sad tha the rddive

dependanceof support pressure on the respective three parameters of
rock classfication issimilar in order that was reported by Goel et al.

[1].

V. MULTIPLEVARIABLESLINEARREGRESON
ANALYSS(MVLRA)MODELS

Multiple linear regresson andlyss is another dternetiv to modd the
complex mathematicd rdationships All theinput varigble of dl three
modds were usad separatdy to cregte three different regresson
modds. The obtained regression modd s for the training data sets can
be defined by the following equationsfor the repective models

Po=-0.0237*Q + 0.0777*R +0.0005*D + 0.0754*u — 0.2435

)

Py =-0.0043 *N +0.072*R + 0.0004* D + 0.0844*u — 0.2397

©)

Prur = -0.0142* RMR +0.0895* R +0.0007*D -0.0016*u + 0.22

(4)
Where,
Pq, Pn, and Prvir are the predicted support pressure by the regression
modds containing Q, N and RMR parameters respectively. Table 8
shows the cdculated vaues of various performance meesures for the
MVLRA modds

Table 8 Statistical values of MVLRA models

859

MVLRA Statistical r R? MSE RMSE MAE MAPE
Model values for
the

Q-Model training 0730 0124 0048 0219 0.148 121.017

N-Model data 0714 0041 0050 0224 0147 116.639
RMR-model 0841 058 0030 0173 0133 142921

Q-Model testing 0605 0054 008 0298 0215 173.968

N-Model data 0605 0093 0103 0322 0234 184.898
RMR-model 0895 0938 0560 0748 0634 1057.406
Comparison with MVLRA modds

MVLRA moddsweretrained and tested usng the same data. Teble 8
shows the various performance messures When compared with the
performance messures given for the corresponding atifical neurd
network modds given in the Table 4, they performed poorly. The
N-modd hasr and R? as0.986 and 0.938 wheress these vauesfor the
MVLRA based N-modd were 0.714 and 0.041. Smilar resultswere
obtained for the other two modds

Comparison with available Empirical Models

Comparison with the available empirical models can be
easily made by looking at the predictions made by the
empirical models and those by the atificd neurd network
models.
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Fig. 3(a) God et al, [1] vs. ANNsbased N-model (b)
Singh et al, [17] vs. ANNs based Q-model (c) Bartan et al,
[16] vs. ANNs based Q-model (d) Unal [14] vs. ANNs
based RMR-model (€) Goel et al, [1] vs. ANNs based
RMR-model

Fig. 3 shows the predictions made by various empirical
models and their counterpart atificd neurd nework models. 1t
should be reminded that the same data were used for the
determination of the performance measures. It is evident that
the predictions of atificd neurd nework N-Model and the
empirical model reported by Goedl et a. [1] are comparable.
Predictions made by the atificd neurd nework Q-Model were
found to be inferior and superior to the empirical model
reported by Singh et a. [17] and Barton et a. [16]
respectively. The coefficient of determination for the
RMR-Model was 0.919 and it was compared with the
predictions made by the empirical models reported by Unal
[14] and Godl et d. [1]. This model outperforms both of
them.
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V. PROPOSED MODEL EQUATIONS

In order to represent the three neural network models for
the prediction of PQ, PN and PRMR, base upon their
respective input variables, following fundamental equation is
used:

Pon = f{ bo + Ticylwic * f (buxe + D72 Wy X;)1} ()
Where,

Ppn is the normalised value of the predicted support
pressure, varies from -1 to +1.

bo isthe bias at the output layer;

wk is the connection weight between kth neuron of hidden
layer and the single output neuron;

bhk is the bias at the kth neuron of hidden layer; h is the
number of neurons in the hidden layer;

m is the number of neurons in the input layer; wjk is the
connection weight between jth input variable and kth neuron
of hidden layer; Xj is the normalized input variable j in the
range [-1, 1] and f isthe activation function..

Q-Modé with Elliot Function

Based upon the connection weights given in Table 5
following equations are derived:

A =2.037+3.078*Q -2.115*R -1.911*D -3.054*u (6)
B =2.093+2.760*Q -3.206* R -1.820* D -0.626*u (7)

C =1.964+2.947*Q -2.304*R -1.846* D -2.603*u (8)

D=4.975-5.501[ - "‘lj o +05]-4872¢( ; El Tar 1051527
#15 ast05] ©)
Pon= o peasy +05 (10)
N-Model with Elliot Function

Based upon the connection weights given in Table 6
following eguations are derived:

A=6.433+8.047*N-15.362* R+0.475* D+0.675*u (11)
B=-0.033+6.632* N+1.982* R-3.067* D+0.547* u (12)
C=-0.168+6.379*N+2,161*R-2.954* D-10.779*u (13)
D=13.589-17.713*[ 1":: :5|+o 5-13074 [ . l_‘5|+05] 1
2.893*[ 1 goag O8] (14)
Phn = 1.+D; -:-D;:L\E.‘5| +05 (15)

RMR-Model with Elliot Function

Based upon the connection weights given in Table 7
following equations are derived:

A = 1.008+6.770*RMR -3.376*R -1.530*D -0.020*u (16)
B= 0.519+5.299*RMR -2.178*R -1.506* D -0.890*u (17)
C=0.981+6.281*RMR -3.190*R -1.468*D -0.056*u  (18)
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AxDIS BeD.25

D=8.750-7.983* [ ———+0.5]-5.893*[ ————+0.5]-7.22
o 1+] A*05 | [ Beos]
pl vt (19)
= 2% .05 20
Pvin = 1+|De05| (20)

The vaues of Po, Pun ad Pruir, Obtained from Eq.10, Eq.15
and Eq.20 respectively vary intherange[-1, 1] and need to be
de-normalized using the following formula:
P = 05. (Po+ 1).(Prax— Prin) + Prin (21)
Where, P, isthe normalised value of support pressure (Po, Pan

and Prvry, and the Prax and Prin are the maximum and the
minimum values of predicted support pressure, respectively.

V1. CONCLUSIONS

Modelling of the support pressureis acomplex phenomenon.
For this, an aternative approach using neural network is
adopted to overcome this complexity. Over the past couple of
years, applications of neural networksin rock engineering are
being explored globaly. In this paper, an application of
neural network for the modeling of the support pressure
based on experimental datareported in literatureis presented.
The model is developed for the data of 25 records of support
pressure. The following conclusions are drawn.

VI. NOTATIONS

1. The results indicate that the 4-3-1 topology of the neura
network architecture is fairly capable of predicting the
support pressure with acceptable accuracy.

2. The proposed neural network models have been evaluated
on a comprehensive performance measures. From the
performance measure analysis, it was evident that the
proposed neural network models predicted the support
pressure closer to the one reported in literature with
acceptable accuracy.

3. The three dternate neural network models for the
prediction of the support pressure in tunnels based on the
rock classification parameters Q, N and RMR perform
either comparable or better than the empirica models
availablein literature.

4. All the ANN based models performed better than the
multiple variable linear regressions analysis models.

5. Model equations are presented based on trained weightsin
the neural network.

Further, more studies are required to be conducted to validate

the results obtained using other variants of neural network

models. In generd, the neura network models have the
limitation in giving explanations and reasoning behind the
model so obtained. In future, suitability of alternative
techniques such as support vector machines, particle swarm
optimization or genetic programming, may also be explored.
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Q Rock Mass Quality

N Rock Mass Number

RMR Rock Mass Rating

D Depth

R Radius

u Normalized closure

MSE Mean Square Error

RMSE Root Mean Square Error

MAE Mean Absol ute Error

MAPE Mean Absolute Percentage Error

R Coefficient Of Determination

r Correlation Coefficient

Rl; Relative importance of the j"" neuron of input

h number of neuronsin the hidden layer

Wik connection weight between j"input variable
and K" neuron of the hidden layer

W connection weight between k™ neuron of
hidden layer and the single output neuron

b, bias at the output layer

m number of neuronsin the input layer

X normalized input variable j in therange [-1 to
+1]

f activation function

P Normalized value of the support pressure
Predicted by ANN Q-model equation

Rw Normalized value of the support pressure
Predicted by ANN N-model equation

Prvirn Normalized value of the support pressure
Predicted by ANN RMR-model equation
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