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    Abstract: Prediction of Tunnel support pressure up to an accurate 
and reliable degree is difficult, but of utmost importance.  Empirical models 
are available with different set of parameters, mostly are based on the rock 
classification parameters. A feed forward neural network based 
predictive models from the data collected from literature for the 
Himalayan tunnels have been developed. The input variables in 
the developed neural network models were depth of over burden, 
radius of tunnel,  normalised closure. The fourth input variable was rock 
mass quality or rock mass number or rock mass rating.  The 
output was a support pressure. Sensitivity analysis relating the 
variables affecting the support pressure has been performed. The 
developed neural network models were compared with models 
developed based on the multiple linear regression analysis as well 
as with empirical models already available in literature. Finally, 
model equations have been presented based on the connection 
weight. 

Keywords: Tunnel support pressure;   ANN;  MVLRA; Sensitivity 
Analysis; Rock classification parameters. 

I. INTRODUCTION 

  Support pressure in tunnels governs the design of support 
system to be provided. Therefore, its prediction is of utmost 
importance. Various theoretical and empirical models (Goel 
et al. [1]) are available in literature to compute the support 
pressure in tunnels in squeezing and non-squeezing ground 
conditions. These models were developed based on certain 
assumptions. Unlike the theoretical and empirical models, 
artificial neural network model do not use any prior 
assumptions due to its capability to learn from the experience 
and to understand inherent relationship among the variables, 
which makes artificial neural network a better choice for 
predicting the support pressure in tunnels. Researchers 
(Alipour et al. [2]; Mohamed et al. [3]; Yeh [4]) have shown 
that artificial neural network were efficient in predicting the 
complex rock behavior and provided the solutions to 
problems related to various tunneling operation. With the 
above in view, in the present study, a feed forward neural 
network based predictive models from the data collected 
from literature for the Himalayan tunnels have been 
developed. The input variables in the developed neural 
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network models were depth of over burden (D), radius of tunnel 
(R),  normalised closure (u). The fourth input variable was rock mass 
quality (Q) or rock mass number (N) or rock mass rating 
(RMR).  The output was a support pressure. Sensitivity 
analysis relating the variables affecting the support pressure 
has been performed. A comparison of the developed neural 
network models is made with the already available models in 
literature. Finally, model equations have been presented 
based on the connection weight.   

II. DATA USED 

The data reported by Goel et al. [1] for the development of 
the artificial neural network model were used consisting of 
data from 25 tunnel sections in squeezing and non-squeezing 
ground conditions with width varying from 2 m to 14 m. For 
training the artificial neural network, data from 18 tunnels 
sections were chosen randomly, and the remaining data were 
used for the testing purpose. For tunnel sections in 
non-squeezing ground conditions, the normalized closure 
was taken as 0. The data used for the training and testing 
purposes are presented separately in the Table 1 and Table 2 
respectively. 

 
Table 1 Data Sets Used For Training Of Various 

Models 
Sr. 

No. 
Name of 
tunnel 

Q N RMR R(m) D(m) u(%) Pob 
(MPa) 

1 Chhibro-Khodri 0.05 0.38 14.00 1.50 280.00 2.80 0.31 
2 Giri-Bata 0.12 0.60 20.00 2.30 240.00 5.50 0.17 
3 Maneri Stage-II 0.80 4.00 35.00 1.25 480.00 2.50 0.17 
4 Maneri 

Stage-III 
0.18 0.90 24.00 3.50 410.00 3.00 0.29 

5 Chhibro-Khodri 0.05 0.50 14.00 4.50 680.00 6.00 1.08 
6 Chhibro-Khodri 0.02 0.11 13.00 4.50 280.00 2.00 1.15 
7 Maneri Stage-I 3.60 9.00 51.00 2.90 225.00 0.00 0.06 
8 Maneri Stage-I 4.50 12.00 55.00 2.90 550.00 0.00 0.08 
9 Maneri Stage-I 0.40 2.00 35.00 2.90 300.00 0.00 0.15 
10 Khara 0.40 2.00 35.00 3.00 150.00 0.00 0.11 
11 Khara 0.40 2.00 30.00 3.00 200.0 0.00 0.15 
12 Lakhwar 8.50 21.25 61.00 3.00 250.00 0.00 0.05 
13 Maneri Stage-II 0.84 4.20 40.00 3.50 175.00 0.00 0.08 
14 Maneri Stage-II 2.71 7.00 50.00 3.50 250.00 0.00 0.07 
15 Salal 1.10 3.00 41.00 6.00 150.00 0.00 0.11 
16 Tehri 0.80 3.50 42.00 6.00 220.00 0.00 0.13 
17 Upper Krishna 15.00 75.00 68.00 6.50 34.00 0.00 0.02 
18 Lakhwar 8.50 21.25 61.00 7.00 250.00 0.00 0.05 

 
Table 2 Data Sets Used For Testing Of Various Models 

 
Sr. 
No. 

Name of 
tunnel 

Q N RMR R(m) D(m) u(%) Pob 
(MPa) 

1 Chhibro-Khodri 0.02 0.11 13.00 1.50 280.00 4.50 0.32 
2 Giri-Bata 0.51 2.55 35.00 2.30 380.00 7.60 0.20 
3 Loktak 0.02 0.17 15.00 2.30 300.00 7.00 0.54 
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4 Maneri Stage-I 0.50 3.75 40.00 2.90 350.00 7.90 0.20 
5 Maneri Stage-II 0.57 2.50 38.00 3.50 200.00 0.00 0.10 
6 Tehri 6.00 15.00 59.00 6.00 300.00 0.00 0.06 
7 Upper Krishna 15.00 37.50 65.00 6.50 52.00 0.00 0.03 

III. NEURAL NETWORK MODEL 

In order to develop three alternate neural network models, 
and to compare the relative importance of three parameters 
Q, N and RMR, three separate input variable data sets were 
chosen.  The first data set contains four parameters such as Q, 
depth of overburden (D), radius of tunnel (R), and normalized 
closure (u). The second and third data set also contains four 
parameters. Only Q and RMR was replaced with N keeping 
other parameters same. These three models are designated as 
Q-model, N-model and RMR-model in the text of this paper. 
Support pressure was the output in all the three models.  
Optimal Neural Network Models Selection 

The architecture of a multi-layer feed-forward neural 
network model affects the output, and therefore some specific 
number of hidden nodes and hidden layers are to be designed. 
Boger and Guterman [5] have suggested that as a thumb rule 
number of hidden layer neurons can be taken as  2/3 (70%) of 
the number of the input variables in input layer.  Blum [6] 
have suggested that the number should be between the input 
layer size and output size. Keeping the above in view, using 
the thumb rule given by Boger and Guterman [5] 2/3 of 4 
inputs, i.e. 3 number of hidden neurons were selected.  A 
similar approach has also been adopted by other researchers ( 
Dutta et al. [7]; Kurkoya [8] ; Ito [9] ).  With single hidden 
layer and 3 hidden neurons, initial random weights in the 
range -1 to 1 were assigned. The next job is to identify the 
optimum number of epochs for each model.  As the 
insufficiently trained model is inaccurate and heavily trained 
model creates noise (Dutta et al. [7]) with trial and error the 
optimum number of epochs were found.  Optimality was 
checked by calculating the mean squared error (MSE) 
between the actual and the predicted support pressure. An 
overfitting effect is observed when training was done beyond 
the optimal point (Dutta et al . [7], Sarle [10]).  Therefore 
training was stopped beyond the optimal point in all the three 
models. Based on the calculated mean squared error, with a 
topology of 4-3-1 for each neural network model 
corresponding to 600, 4000 and 600 number of epochs was 
selected for Q-model, N-model and RMR-model 
respectively. 
Activation Function Selection 

The aim of this work is to select the best activation 
functions for hidden and output layer neurons of the neural 
network. This was done using Agiel Neural Network, an open 
source software. It supports various activation functions such 
as linear, Threshold, Threshold symmetric, Sigmoid, 
Sigmoid stepwise, Sigmoid symmetric, Gaussian, Gaussian 
symmetric, Elliot, Elliot symmetric, Linear piece, Linear 
piece symmetric, Sin symmetric, Cos symmetric, Sin, and 
Cos. Activation function governs the output of a neuron 
corresponding to a given input, it scales the output into a 
proper range and introduces nonlinearity. With an initial 
random weight of -1 to 1, maximum error of 0.0001, 
TRAIN_RPROP as the learning algorithm, and default 
activation steepness of 0.5 for activation functions of hidden 
and output neurons, all three models were tested for the 

above-mentioned activation functions with their respective 
optimal epochs. Selection of a function was be made using 
the mean squared error as the performance measure. Lesser 
value of mean squared error indicates better prediction. 
Based on the mean squared error, it was found that all three 
models gave best results with Elliot function. Therefore Elliot 
function was selected as an activation function for both 
hidden neurons and output neurons.  
Performance Measures for Artificial Neural Network 
Models  

Considering ‘Accuracy’ as the best performance measure, 

along with corfficient of correlation (r) and coefficient of 
determination (R2), mean square error (MSE) , root mean 
square error (RMSE), mean absolute error (MAE),  and mean 
absolute percentage error (MAPE) were calculated to 
calculate the magnitude of the errors. Higher values of MSE, 
RMSE, MAE and MAPE show less accurate predictions, 
while the higher values of r and R2 show more accurate 
predictions.  In general practice, only r and R2 are used to 
predict the accuracy of a model, but for a better comparison 
all the performance measures should be compared. RMSE 
will always remain less or equal to MAE. Further, when 
RMSE equals MAE (both can vary from 0 to ∞), then all 
errors would have the same magnitude. Table 3 presents the 
mathematical expressions used to calculate these 
performance measures. The performance measures for the 
training of the three models are shown in Table 4. 

  
Table 3 Various Statistical Parameters And Error 

Models 
Statistical parameter Mathematical expression 

Correlation coefficient (r) r  

 
Coefficient of determination 
(R2) 

R2=  

 
Mean square error (MSE) MSE=  

Root mean square error (RMSE) 
RMSE=  

 
Mean absolute error (MAE) MAE=  

 
Mean absolute percentage 
error (MAPE) 

MAPE= *100 

 

Note: ,   : target and predicted tunnel support pressure respectively, 

,  : mean of the target and predicted tunnel support pressure 

respectively, SPt, SPp  :  standard deviation of the target and predicted tunnel 
support pressure respectively, n : number of observations 

 
 Table 4 Statistical Values For Training And Testing 

Data Sets For Three ANN Models With Elliot Activation 
Function 

Neural 
Network 
Model 

Statistical 
values for 

the 

r R2 MSE RMSE MAE MAPE 

Q-Model training 
data 

0.924 0.478 0.024 0.154 0.121 110.369 

N-Model 0.986 0.937 0.005 0.068 0.052 48.041 

RMR-model 0.992 0.894 0.007 0.081 0.063 76.377 

Q-Model testing 0.832 0.058 0.010 0.098 0.074 61.761 
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N-Model data 0.990 0.932 0.001 0.035 0.024 28.829 
RMR-model 0.940 0.745 0.004 0.063 0.050 49.772 

 
Study of this table reveal that best predictions were made by the 
N-Model having MSE of 0.0046. RMR-model gave the second best 
predictions with MSE of 0.0065 and the Q-model gave the MSE of 
0.0238 and was at number three.  Further, models should also be 
tested for their predictability with the testing data.  For this, testing was 
done using the data of the remaining tunnel sections. Results of the 
training and testing are shown in Fig. 1(a)., Fig. 1(b)., and Fig. 1(c). for 
Q-model, N-Model and RMR-Model respectively.   

 
Fig. 1 Training and Testing of (a) Q-model with Elliot 

function (b) N-model with Elliot function (c) RMR-model 
with Elliot function 

 
Sensitivity Analysis 

In past many studies, researcher (Goel et al. [1]) has expressed 
difference of opinion on the effect of parameter such as the size of the 
tunnel and depth of overburden on the support pressure. Keeping 
this aspect in view, sensitivity analysis was performed to determine 
the relative importance (RI)  of the input variables  
affecting the output. For the sensitivity analysis, methods reported by 
Garson [11] and Olden and Jackson [12] are available in literauture. 
Former method is based upon the weights configuration, but it 
measures the absolute values of the weights, and latter suggests the 
improvements to overcome these limitation.  Therefore, following the 
procedure given by the latter method, the sum of the product of the 
final weights of the connection of the input neurons to the hidden 
neurons with  the connection wight of the hidden neurons to the 
output neurons for all input neurons was calculated individualy for 
each model. The equation (1) used for performing the sensitivity 
analysis is given below. 
  RIj = *                                                                               
(1) 
Where, 
 RIj is the relative importance of the jth neuron of input layer; 
h is the number of neurons in the hidden layer; wjk is the 
connection weight between jth input variable and kth neuron of 
the hidden layer;   is the connection weight between kth 
neuron of hidden layer and the single output neuron. 
The connection weights between the input neurons and hidden 
neurons and those of the hidden neurons to the output neurons are 
given in the Table 5, Table 6, and Table 7 for Q-model, N-model, and 
RMR-model respectively.   

 
Fig. 2 Relative importance of various input parameters of 

(a) Q-Model (b) N-Model (c) RMR-Model 
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Table 5 Final connection weights for Q-model 
 

Neuron Weights (wjk) Biases 
Q R(m) D(m) u(%) P bhk b0 

Hidden neuron 1 
(k=1) 

3.078 -2.115 -1.911 -3.054 -5.591 2.037 4.975 

Hidden neuron 2 
(k=2) 

2.760 -3.206 -1.820 -0.626 -4.872 2.093 - 

Hidden neuron 3 
(k=3) 

2.947 -2.304 -1.846 -2.603 -5.274 1.964 - 

 
Table 6 Final connection weights for N-Model 

 
Neuron Weights (wjk) Biases 

N R(m) D(m) u(%) P bhk b0 
Hidden 
neuron 1 
(k=1) 

8.047 -15.362 0.475 0.675 -17.713 6.433 13.589 

Hidden 
neuron 2 
(k=2) 

6.632 1.982 -3.067 -10.816 -13.074 -0.033 - 

Hidden 
neuron 3 
(k=3) 

6.379 2.161 -2.954 -10.779 -12.893 -0.168 - 

 
Table 7 Final Connection Weights For RMR-Model 

 
Neuron Weights (wjk) Biases 

RMR R(m) D(m) u(%) P bhk b0 

Hidden neuron 
1 (k=1) 

6.770 -3.376 -1.530 -0.020 -7.983 1.008 8.750 

Hidden neuron 
2 (k=2) 

5.299 -2.178 -1.506 -0.890 -5.893 0.519 - 

Hidden neuron 
3 (k=3) 

6.281 -3.190 -1.468 -0.056 -7.224 0.981 - 

 
When  relative importance is positive it signifies that the support 
pressure increases with the increase in the value of input parameter, if 
negative, means it decreases with the decrease in the value of the input 
parameter, when near to zero means that any variation in the input has 
less effect on the output (Dutta et al. [7]; Kim et al. [13]). The obtained 
relative importance (RI) of the parameters of the respective models are 
shown in the Fig. 2. It can be inferred from these results that support 
pressure (P) is directly proportional to  R, D and u for the Q-model 
and N-model, while inversly proportional to the value of Q and N.  
Given to the physical meaning of the rock classification parameters Q 
and N, it can be said that support pressure decrease with the increase 
in the value of these parameters. Therefore, these results match with 
physical meaning of the support pressure and its various parameters. 
Also, support pressure increases when depth of the overburden and 
size of the tunnel are increased. For the RMR-model, support pressure 
is directly proportional to RMR, but inversely proportional to R, D 
and u. These results are in disagreement with the empirical equations 
reported by researchers (Unal [14]; Goel et al. [1]; Goel and Jethwa 
[15]). The empirical models presented by the researchers (Unal [14]; 
Goel et al. [1]; Goel and Jethwa [15]) have shown that the support 
pressure is directly proportional to the size of the tunnel and depth of 
the overburden whereas in the RMR-model,  the relative importance 
of the size of the tunnel and depth of the overburden is negative 
signifying that these parameters are inversly proportional. Further, the 
relative importance of the RMR was 431.207, which signifies that 
support pressure increases when RMR is increased. It is contrary to 
the physical meaning of the rock classification parameter –RMR and 
the available empirical models, in which support pressure decrease 
with the increase in the RMR, because higher RMR signifies a good 
rock. Further, results of the sensitivity analysis also depend upon the 
accuracy of the available data, therefore an important parameter could 
show lower relative importance if the data is not correct.  
The comparison of the relative dependance of the accuracy of the 
models on the rock classification parameters, can easily be  unerstood 
by comparing the performance measures of the corresponding artifical 

neural network models.  From Table 4,  it can be seen that N-model 
performs better than the other two models. It has the coefficients of 
determinations of 0.938 and 0.932 for the training and testing data. 
The correspoding values for the Q-model and RMR-model are 0.478 
& 0.058 and 0.894 and 0.745 respectively. Other performance 
measures such as MSE, RMSE, MAE and MAPE, also reveal that for 
both training and testing data,  N-model performed better than the 
other two models.  Therefore, it can be said that the relative 
dependance of  support pressure on the respective three parameters of 
rock classification is similar in order that was reported by Goel et al. 
[1].   

IV. MULTIPLE VARIABLES LINEAR REGRESION 

ANALYSIS (MVLRA) MODELS 

Multiple linear regression analysis is another alternativ to model the 
complex mathematical relationships. All the input variable of all three 
models were used separately to create three different regression 
models. The obtained regression models for the training data sets can 
be defined by the following equations for the respective models: 
 
PQ  = -0.0237*Q + 0.0777*R +0.0005*D + 0.0754*u – 0.2435               
 (2)                
 
PN  = -0.0043 *N +0.072*R + 0.0004*D + 0.0844*u – 0.2397              
 (3)         
          
PRMR  = -0.0142*RMR +0.0895*R +0.0007*D -0.0016*u + 0.22       
 (4)                
 
Where, 
 
PQ, PN, and PRMR  are the predicted support pressure by the regression 
models containing Q, N and RMR parameters respectively. Table 8 
shows the calculated values of various performance measures for the 
MVLRA models.   

 
Table 8 Statistical values of MVLRA models 

 
MVLRA 
Model 

Statistical 
values for 

the 

r R2 MSE RMSE MAE MAPE 

Q-Model training 
data 

0.730 0.124 0.048 0.219 0.148 121.017 

N-Model 0.714 0.041 0.050 0.224 0.147 116.639 

RMR-model 0.841 0.588 0.030 0.173 0.133 142.921 

Q-Model testing 
data 

0.605 0.054 0.089 0.298 0.215 173.968 
N-Model 0.605 0.093 0.103 0.322 0.234 184.898 

RMR-model 0.895 0.938 0.560 0.748 0.634 1057.406 

 
Comparison with MVLRA models 
 
MVLRA models were trained and tested using the same data. Table 8 
shows the various performance measures. When compared with the 
performance measures given for the corresponding artifical neural 
network models given in the Table 4, they performed poorly.  The  
N-model has r and R2  as 0.986 and 0.938 whereas these values for the 
MVLRA based N-model were 0.714 and 0.041. Similar results were 
obtained for the other two models. 
Comparison with available Empirical Models 
Comparison with the available empirical models can be 
easily made by looking at the predictions made by the 
empirical models and those by the artifical neural network 
models.  
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(a) 

 
(b) 

 
(c ) 

 
(d) 

 
(e) 

Fig.  3 (a)  Goel et al, [1] vs. ANNs based N-model  (b) 
Singh et al, [17] vs. ANNs based Q-model  (c) Bartan et al, 

[16] vs. ANNs based Q-model  (d) Unal [14] vs. ANNs 
based RMR-model  (e) Goel et al, [1] vs. ANNs based 

RMR-model 
 
Fig. 3 shows the predictions made by various empirical 
models and their counterpart artifical neural network models.  It 
should be reminded that the same data were used for the 
determination of the performance measures. It is evident that 
the predictions of artifical neural network N-Model and the 
empirical model reported by Goel et al. [1] are comparable.  
Predictions made by the artifical neural network Q-Model were 
found to be inferior and superior to the empirical model 
reported by Singh et al. [17] and Barton et al. [16] 
respectively.  The coefficient of determination for the 
RMR-Model was 0.919 and it was compared with the 
predictions made by the empirical models reported by Unal 
[14] and Goel et al. [1]. This model outperforms both of 
them. 
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V.   PROPOSED MODEL EQUATIONS 

In order to represent the three neural network models for 
the prediction of PQ, PN and PRMR, base upon their 
respective input variables, following fundamental equation is 
used: 

pn = f { bo + } (5)               

Where, 
Ppn is the normalised value of the predicted support 

pressure, varies from -1 to +1. 
bo is the bias at the output layer;  
wk is the connection weight between kth neuron of hidden 

layer and the single output neuron; 
bhk is the bias at the kth neuron of hidden layer; h is the 

number of neurons in the hidden layer;  
m is the number of neurons in the input layer; wjk is the 

connection weight between jth input variable and kth neuron 
of hidden layer; Xj is the normalized input variable j in the 
range [-1, 1] and f is the activation function..  

 
Q-Model with Elliot Function 
 
Based upon the connection weights given in Table 5 
following equations are derived: 
 
A =2.037+3.078*Q -2.115*R -1.911*D -3.054*u         (6)                
                
B =2.093+2.760*Q -3.206*R -1.820*D -0.626*u        (7)                
 
C =1.964+2.947*Q -2.304*R -1.846*D -2.603*u        (8)                
 

D=4.975-5.591* +0.5]-4.872* +0.5]–5.27

4* +0.5]                                          (9)                                                                                                                                                                                                                       

 

PQn =  +0.5                                                    (10)                        

 
N-Model with Elliot Function 
 
Based upon the connection weights given in Table 6 
following equations are derived: 
 
A=6.433+8.047*N-15.362*R+0.475*D+0.675*u        (11)                
 
B=-0.033+6.632*N+1.982*R-3.067*D+0.547*u         (12)                
C=-0.168+6.379*N+2.161*R-2.954*D-10.779*u        (13) 

D=13.589-17.713* +0.5]-13.074* +0.5]-1

2.893* +0.5]                                (14)                                                   

 

PNn =  +0.5                                              (15)               

 
RMR-Model with Elliot Function 
 
Based upon the connection weights given in Table 7 
following equations are derived: 
 
A =   1.008+6.770*RMR -3.376*R -1.530*D -0.020*u   (16)                
 
B =    0.519+5.299*RMR -2.178*R -1.506*D -0.890*u   (17)   
             
C = 0.981+6.281*RMR -3.190*R -1.468*D -0.056*u      (18)              

 

D=8.750-7.983* +0.5]-5.893* +0.5]–7.22

4* +0.5]                            (19)                                                                      

                                                                                                                                                                                                                                      
 

PRMRn =   +0.5                                                 (20)             

 
The values of PQn, PNn  and PRMRn obtained from Eq.10, Eq.15 
and Eq.20 respectively vary in the range [-1, 1] and need to be 
de-normalized using the following formula: 
 

 = 0.5. (Pn + 1).(Pmax – Pmin) + Pmin                           (21)                
 
Where, Pn is the normalised value of support pressure (PQn, PNn  
and PRMRn), and the Pmax and Pmin are the maximum and the 
minimum values of predicted support pressure, respectively. 
 

VI. CONCLUSIONS 
Modelling of the support pressure is a complex phenomenon. 
For this, an alternative approach using neural network is 
adopted to overcome this complexity. Over the past couple of 
years, applications of neural networks in rock engineering are 
being explored globally. In this paper, an application of 
neural network for the modeling of the support pressure 
based on experimental data reported in literature is presented. 
The model is developed for the data of 25 records of support 
pressure. The following conclusions are drawn. 

VI. NOTATIONS 

 
1. The results indicate that the 4-3-1 topology of the neural 

network architecture is fairly capable of predicting the 
support pressure with acceptable accuracy.  

2. The proposed neural network models have been evaluated 
on a comprehensive performance measures. From the 
performance measure analysis, it was evident that the 
proposed neural network models predicted the support 
pressure closer to the one reported in literature with 
acceptable accuracy.  

3. The three alternate neural network models for the 
prediction of the support pressure in tunnels based on the 
rock classification parameters Q, N and RMR perform 
either comparable or better than the empirical models 
available in literature.  

4. All the ANN based models performed better than the 
multiple variable linear regressions analysis models. 

5. Model equations are presented based on trained weights in 
the neural network.  

Further, more studies are required to be conducted to validate 
the results obtained using other variants of neural network 
models. In general, the neural network models have the 
limitation in giving explanations and reasoning behind the 
model so obtained. In future, suitability of alternative 
techniques such as support vector machines, particle swarm 
optimization or genetic programming, may also be explored. 
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Q Rock Mass Quality 

N Rock Mass Number 

RMR Rock Mass Rating 

D Depth 

R Radius 

u Normalized closure 

MSE Mean Square Error 

RMSE Root Mean Square Error 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

R2 Coefficient Of Determination 

r Correlation Coefficient 

RIj Relative importance of the jth neuron of input  

h number of neurons in the hidden layer 

wjk connection weight between jth input variable 
and kth neuron of the hidden layer 

Wk connection weight between kth neuron of 
hidden layer and the single output neuron 

bo bias at the output layer 

m number of neurons in the input layer 

Xj normalized input variable  j in the range [-1 to 
+1] 

f activation function 
 

PQn Normalized value of the support pressure 
Predicted by ANN Q-model equation 

PNn Normalized value of the support pressure 
Predicted by ANN N-model equation 

PRMRn Normalized value of the support pressure 
Predicted by ANN RMR-model equation 
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