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Abstract: Facial sketches are widely used in judicial and legal 
proceedings. Law enforcers use facial sketches to help them with 
the visual aspects of the case, using witness descriptions and video 
footage. However, drawing forensic sketches by hand is a 
time-consuming procedure and a situation may arise where the 
authorities have less time in hand to solve a case. The present 
research work aims to create a basic model which can generate 
facial images from a given set of input features; similar to what a 
forensic artist does, thus, enabling a faster and efficient sketching 
procedure. In this work, a category of generative algorithms, 
called Generative Adversarial Networks has been used to build 
this model. To train this model, a dataset of anime girls has been 
used and thus it can only generate the same, making sure that the 
generated image contains the input features. 

Index Terms: Artificial Intelligence, Auxiliary Classifier 
Generative Adversarial Network, Deep Learning, Face 
Generation, Forensic Art, Generative Adversarial Network, 
Machine Learning, Neural Networks.  

I. INTRODUCTION 

  The recent times have seen an increase in criminal activities 
such as assault, robbery, kidnapping etc. throughout the 
world, as shown by the Crime Data of the United Nations 
Office on Drugs and Crime (UNODC) [3]. In order to assist 
the law enforcement agencies by making the procedure of 
processing the evidence, extracting clues, and producing 
them in court fast and accurate, a large number of research 
projects have been undertaken. For example, biometric 
scanners, and face recognition algorithms to match faces 
from a database are widely used in investigation and 
prosecution procedures. Sketching faces based on given 
facial features is one of the applications where technology 
has been helping the law enforcement agencies.  
 Traditionally, forensic sketches are hand drawn based on the 
details given by various eyewitnesses. However, when it 
comes to the field of forensic arts, plenty of people are not 
willing to work here and thereby leaving a handful of skilled 
artists available for the investigation in the crime branch. 
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Most of the artists working in this area are either 
freelancers hired by departments or active-duty officers 
or other agency employees who are called in when 
needed. Moreover, traditional methods are very 
time-consuming. When creating a face model, the forensic 
sartist looks at whether the person is masculine or feminine, 
as well as their skin tone, age, wrinkles, freckles, the shadow 
of the beard, and attractiveness. But most importantly, they 
look for the descriptions of the eyes and hair of the suspect. In 
case of eyes, they look for the direction of the eyeballs, their 
colour, position and shape of eyebrows, and the distance 
between the eye sockets. In the case of hair, they look for 
their length, colour, and other features. With this view in 
mind, the present research work has been designed on the 
generation of face images using the application of Generative 
Adversarial Networks or GANs [1] to analyse the features 
(viz. hair colour and eye colour) given as input by the user 
and then generate an image of that person. A variation of 
GAN, known as Auxiliary Classifier GAN or ACGAN [4]  

has been used here and this enables the work to take feature 
inputs and generate images based on the inputs. For training 
and testing, a dataset of anime girls from Getchu [17] has 
been used. Thus, the present work can only generate faces of 
anime girls with this model. This is a basic model which can 
be improved later by using a dataset of real people and 
including more facial features. 

II. BACKGROUND STUDY 

Researchers have developed tools to create composite 
sketches based on the description of an eyewitness, in the last 
few years. These sketch generation tools, for example, 
Identi-Kit 7 HD [2], are fast and the law enforcement 
agencies now often utilize them for creating the composite 
sketches. In contrast to hand-drawn sketches, composite 
sketches enable quick feedback from the eye-witness during 
the process of sketch generation. But tools like these have a 
learning curve, and a person who wants to use the software 
have to learn using it at first.In the past few years, various 
researches have been done related to the generation of face 
images based on user inputs. An anime girl face generator 
was made using DRAGAN [6] which can generate random 
face drawings based on various facial features. The research 
work described in this paper has aimed to develop a similar 
model which can be used as a stepping stone to automate the 
process of facial image generation with the help of Auxiliary 
Classifier GAN or ACGAN, thus, eliminating the learning 
curve and enabling people,  
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irrespective of technical expertise, to get facial sketches 
drawn based on a number of given features. 
 Figure 1 shows the flowchart of Generative Adversarial 
Networks which are composed of two neural networks.  

 
Figure 1: The Model of a Generative Adversarial Neural 

Network 
The neural network G(z; θg) is used to model the generator 
[1]. Its role is mapping input noise variables z to the desired 
data space x. Here θg are the parameters of the generator. 
Conversely, a second neural network D(x; θd) models the 
discriminator1 and outputs the probability that the data came 
from the real dataset, in the range (0,1). Here, θd are the 
parameters of the discriminator. As a result, the discriminator 
is trained to correctly classify the input data as either real or 
fake. For this, an equation is used and this also termed as the 
loss/error function which is given as follows [1]: 

 
min(G) max(D)V(D, G) = Ex~pdata[log(D(x))] + 
Ez~pz[log(1-D(G(z)))]. 

      
(1) 

 
During training, both the discriminator and generator are 
trying to optimize opposite loss functions, they can be thought 
of two agents playing a minimax game with value function 
V(D, G). 
  

 
Figure 2: The Log Loss Graph; low probability values 

are highly penalized [9] 

In this minimax game, the generator is trying to maximize its 
probability of having its outputs recognized as real, while the 

discriminator is trying to minimize this same value. In 
practice, the logarithm of the probability is used in the loss 
functions instead of the raw probabilities, since using a log 
loss heavily penalizes classifiers that are confident about an 
incorrect classification, as shown in Figure 2. 

III. PROBLEM DESCRIPTION 

The basic concept of this research work is to take as input the 
textual description of a person, which in this case is an anime 
image and to generate five samples of random images from 
that random noise which will be similar to the textual 
description provided by the user. 
Generative Adversarial Networks have been the state of the 
art for random generation of images. It is a modified 
functional model of a Variational Auto-Encoders (VAEs) 
[15]. With a less amount of training and a bit of tuning, the 
GAN can generate better images than a VAE. Thereby for 
this research work, the Auxiliary Classifier Generative 
Adversarial Networks (ACGANs) have been implemented to 
generate images for labelled generation. 

ACGAN was introduced by AgustusOdenaet al [4]. In the 
ACGAN, every generated sample has a corresponding class 
label, c ∼ pc in addition to the noise z, both of which are used 
by the generator G to generate images Xfake = G(c,z).The 
discriminator D gives both a probability distribution over 
sources and a probability distribution over the class labels, 
P(S | X), P(C | X) = D(X). The objective function has two 
parts: the log-likelihood of the correct source, LS, and the 
log-likelihood of the correct class, LC. The following two 
equations express LS and LC respectively [4]. They are given 
by:  

LS= E[log P(S = real | Xreal)] + E[log P(S = fake | Xfake)] 
(2) 

LC = E[log P(C = c | Xreal)]+ E[logP(C = c | Xfake)] 
(3) 

D is trained to maximize (LS + LC) while G is trained to 
maximize (LC − LS). ACGANs learn a representation for z 
that is independent of class label [15]. 
Thus, the pseudo code of the proposed methodology is as 
follows: 
begin: 

X ← data for training 
Y ← labelled description of the data 
generator ← Stacked model of Dense and 

Transposed Convolution layers (up to 4 layers with 
stride value of 2 and kernel size of 3) and Batch 
Normalization 
discriminator ← Stacked model of Dense and 

Convolution Layers (up to 4 layers with stride value  
of 2 and kernel size of 3) and Maxpooling and Batch 
Normalization 
combined ←  
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Stacked model of Generator and Discriminator 
Training: 

Generate random noise and sampled labels for that 
noise. 

Train the discriminator to maximize LS + LC. 
After certain epochs, stop discriminator training 

and train the generator to maximize LC − LS. 
Stop the training when a convergence position is 

reached. 
end training end 

IV. IMPLEMENTATION 

The proposed algorithm for the research work was 
implemented using Python 3.6.810 as the programming tool 
and for the machine learning libraries, TensorFlow 1.11 
(GPU version)11 was used. Keras12 was also used for its 
high-level API with TensorFlow as its backend. Other 
dependencies that were included were NumPy13 and 
Matplotlib14. In order to decrease the time taken for training 
the model, by taking the full advantage of the parallel 
processing capabilities of the GPU, the CUDA® parallel 
computing platform7  was used. For GPU-accelerated library 
of primitives for deep neural networks and highly tuned 
implementations for standard routines such as forward and 
backward convolutions, pooling, normalization, and 
activation layers, the NVIDIA CUDA® Deep Neural 
Network (cuDNN)8 library was used. 

The application was trained and tested in a computer with 
an Intel i5 8th generation processor, 8 Gigabytes of RAM, 1 
Terabyte of hard drive space, and a Nvidia GTX 1050Ti 
graphical processing unit which had a computation capability 
of 5.2. 

The very first phase of the implementation of the proposed 
method was to collect the dataset which was downloaded 
from Brian Chao’s Github repository [16]. The dataset 
consists of 21,551 anime faces scraped from Getchu [17], 
which are then cropped using the anime face detection 
algorithm lbpcascade_animeface [18] has been used for this 
research work. All images are resized to 64 × 64 pixels. 

The different features like hair color and eye color were 
defined based on which feature would be considered to 
differentiate the pictures in the dataset. In order to convert the 
features of different pictures into matrices, the pictures were 
tagged based on different features. This technique was 
implemented by taking a finite set of different variants of hair 
and eyes as mentioned in table 1 and table 2.  
 
Table 1: The First Set Of Different Variants Of Hair And 
Eye Colours Used To Differentiate Between The Pictures 

In The Dataset 
 
Hair Orange White Aqua Gray Green Red 
Eyes Gray Black Orange Pink Yellow Aqua 

 
Table 2: The Second Set Of Different Variants Of Hair 
And Eye Colours Used To Differentiate Between The 

Pictures In The Dataset 
 
Hair Purple Pink Blue Black Brown Blonde 
Eyes Purple Green Brown Red Blue  

 

Then every image in the dataset has been iterated through 
comparing their features with the finite set already defined. 
When a successful match was found, the index of that feature 
was put in the finite dataset and was used for tagging the 
array for the respective image.The next phase of the 
implementation was training the model. The model consisted 
of two neural networks, the generator and the discriminator. 
The generator was designed with four transposed convolution 
layers and a dense layer whereas the discriminator was 
designed with convolution layers and maxpooling layers. 
Both the neural network models had used the Adam 
Optimizer as the optimization function [22]. 

 
Figure 3: Face Images Generated At The End Of 10,000 

Epochs 
During training, when the generator was trained, the 
discriminator was not trained and vice versa. The generator's 
work was to use random noise to generate images and then it 
was mapped with the sampled labels which were then fed into 
the discriminator. The discriminator and the generator were 
trained to tally against each other and then come down to a 
convergence point. Once the convergence point was reached, 
the training was stopped. 

 

 
 
 
 
 
 
 
 
Figure 4: The loss function graph of the Generator Model 
The proposed model was trained for 25,000 epochs to 
generate images each of resolution 64 × 64 pixels. Figure 3 
shows the images generated at the end of 10,000 epochs. 
Figure 4 depicts the loss function graph of the generator 
model. It is observed from the graph that the loss function is 
minimized because during compilation of the application, the 
negative value of the generator loss function (LC – LS) was 
taken into account and thereby generating a minimization 
graph after the complete 
epoch.  
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On the other hand, figure 5 depicts the loss function graph of 
the discriminator model. It is observed again that the loss 
function is minimized because during compilation of the 
application, the negative value of the loss function (LS + LC) 
was chosen and thereby generating a minimization graph 
after the complete epoch. 

 
Figure 5: The Loss Function Graph Of The 

Discriminator Model 
The model was then tested by taking random inputs from the 
users and then five samples of images based on the given hair 
color and eye color were generated for every test input. 
Figure 6 (a, b, c, d) shows different generated images based 
on different inputs. 
 
 
 
 
 

Figure 6: Samples Of Images Generated 
Under User-Defined Conditions. 

(a) black hair and blue eyes 
(b) red hair and green eyes 
(c) white hair and different colours of eyes 
(d) pink hair and different colours of eyes 

V. FUTURE IMPROVEMENTS AND CONCLUSION 

In the present research work, the automatic generation of 

the anime character has been explored. By combining a clean 
dataset with GAN training strategies, a model was 
successfully built and the model can generate facial images of 
anime characters. However, this model has some constraints 
which are mentioned below: 

The primary constraint is that only anime girls could be 
generated as the dataset used here was only of anime girls. 
Though with minor modifications in the algorithm and using 
a dataset of real face images would help the model generate 
images of real people based on their features.  

The next constraint is related to the features which were 
considered here. For simplification, only the hair color and 
eye color were chosen as the inputs to generate an image. 
However, this model can be improved to take more features, 
like, the position of the mouth, spectacles, skin tone, hair 
length, etc., as various inputs. Incorporating more features 
would help the model to generate images which would have 
been more accurate to the description. 

Finally, it was observed that the output images were of 
much lower resolution. This was because of the absence of 
SRGAN. To improve the quality of the image, this model can 
be trained along with the SRGAN [19] or the SRCNN [20] 

system which was optimally designed for high-quality 
resolution image generation. Moreover, as the quality or the 
resolution of the image increases, its distinguishable features 
have also increased. Thus, the discriminator can differentiate 
between a fake image and a real image with a higher 
resolution facility. DiscoGAN [21] can also be applied for 
different image perspective.Thus, if all these improvements 
can be made to this model, this model can be even better than  

what it has been put forward here and can even be used in 
real-life situations, and help in the judiciary and legal 
proceedings. 
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