
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

746

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F7988088619/2019©BEIESP
DOI: 10.35940/ijeat.F7988.088619
Journal Website: www.ijeat.org

Abstract: Facial sketches are widely used in judicial and legal
proceedings. Law enforcers use facial sketches to help them with
the visual aspects of the case, using witness descriptions and video
footage. However, drawing forensic sketches by hand is a
time-consuming procedure and a situation may arise where the
authorities have less time in hand to solve a case. The present
research work aims to create a basic model which can generate
facial images from a given set of input features; similar to what a
forensic artist does, thus, enabling a faster and efficient sketching
procedure. In this work, a category of generative algorithms,
called Generative Adversarial Networks has been used to build
this model. To train this model, a dataset of anime girls has been
used and thus it can only generate the same, making sure that the
generated image contains the input features.

Index Terms: Artificial Intelligence, Auxiliary Classifier
Generative Adversarial Network, Deep Learning, Face
Generation, Forensic Art, Generative Adversarial Network,
Machine Learning, Neural Networks.

I. INTRODUCTION

 The recent times have seen an increase in criminal activities
such as assault, robbery, kidnapping etc. throughout the
world, as shown by the Crime Data of the United Nations
Office on Drugs and Crime (UNODC) [3]. In order to assist
the law enforcement agencies by making the procedure of
processing the evidence, extracting clues, and producing
them in court fast and accurate, a large number of research
projects have been undertaken. For example, biometric
scanners, and face recognition algorithms to match faces
from a database are widely used in investigation and
prosecution procedures. Sketching faces based on given
facial features is one of the applications where technology
has been helping the law enforcement agencies.
 Traditionally, forensic sketches are hand drawn based on the
details given by various eyewitnesses. However, when it
comes to the field of forensic arts, plenty of people are not
willing to work here and thereby leaving a handful of skilled
artists available for the investigation in the crime branch.

Revised Manuscript Received on October 30, 2019.

* Correspondence Author
Debabrata Datta*, Department of Computer Science, St. Xavier’s

College(Autonomous), Kolkata, India.
Abhradeep Dey, Department of Computer Science, St. Xavier’s

College(Autonomous), Kolkata, India.
Adityam Ghosh, Department of Computer Science, St. Xavier’s

College(Autonomous), Kolkata, India.
Rishabh Tiwari, Department of Computer Science, St. Xavier’s

College(Autonomous), Kolkata, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Most of the artists working in this area are either
freelancers hired by departments or active-duty officers
or other agency employees who are called in when
needed. Moreover, traditional methods are very
time-consuming. When creating a face model, the forensic
sartist looks at whether the person is masculine or feminine,
as well as their skin tone, age, wrinkles, freckles, the shadow
of the beard, and attractiveness. But most importantly, they
look for the descriptions of the eyes and hair of the suspect. In
case of eyes, they look for the direction of the eyeballs, their
colour, position and shape of eyebrows, and the distance
between the eye sockets. In the case of hair, they look for
their length, colour, and other features. With this view in
mind, the present research work has been designed on the
generation of face images using the application of Generative
Adversarial Networks or GANs [1] to analyse the features
(viz. hair colour and eye colour) given as input by the user
and then generate an image of that person. A variation of
GAN, known as Auxiliary Classifier GAN or ACGAN [4]

has been used here and this enables the work to take feature
inputs and generate images based on the inputs. For training
and testing, a dataset of anime girls from Getchu [17] has
been used. Thus, the present work can only generate faces of
anime girls with this model. This is a basic model which can
be improved later by using a dataset of real people and
including more facial features.

II. BACKGROUND STUDY

Researchers have developed tools to create composite
sketches based on the description of an eyewitness, in the last
few years. These sketch generation tools, for example,
Identi-Kit 7 HD [2], are fast and the law enforcement
agencies now often utilize them for creating the composite
sketches. In contrast to hand-drawn sketches, composite
sketches enable quick feedback from the eye-witness during
the process of sketch generation. But tools like these have a
learning curve, and a person who wants to use the software
have to learn using it at first.In the past few years, various
researches have been done related to the generation of face
images based on user inputs. An anime girl face generator
was made using DRAGAN [6] which can generate random
face drawings based on various facial features. The research
work described in this paper has aimed to develop a similar
model which can be used as a stepping stone to automate the
process of facial image generation with the help of Auxiliary
Classifier GAN or ACGAN, thus, eliminating the learning
curve and enabling people,

Generation of Facial Drawings Using Generative
Adversarial Networks

Debabrata Datta, Abhradeep Dey, Adityam Ghosh, Rishabh Tiwari

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.F7988.088619&domain=www.ijeat.org

Generation of Facial Drawings Using Generative Adversarial Networks

747

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F7988088619/2019©BEIESP
DOI: 10.35940/ijeat.F7988.088619
Journal Website: www.ijeat.org

irrespective of technical expertise, to get facial sketches
drawn based on a number of given features.
 Figure 1 shows the flowchart of Generative Adversarial
Networks which are composed of two neural networks.

Figure 1: The Model of a Generative Adversarial Neural

Network
The neural network G(z; θg) is used to model the generator
[1]. Its role is mapping input noise variables z to the desired
data space x. Here θg are the parameters of the generator.
Conversely, a second neural network D(x; θd) models the
discriminator1 and outputs the probability that the data came
from the real dataset, in the range (0,1). Here, θd are the
parameters of the discriminator. As a result, the discriminator
is trained to correctly classify the input data as either real or
fake. For this, an equation is used and this also termed as the
loss/error function which is given as follows [1]:

min(G) max(D)V(D, G) = Ex~pdata[log(D(x))] +
Ez~pz[log(1-D(G(z)))].

(1)

During training, both the discriminator and generator are
trying to optimize opposite loss functions, they can be thought
of two agents playing a minimax game with value function
V(D, G).

Figure 2: The Log Loss Graph; low probability values

are highly penalized [9]

In this minimax game, the generator is trying to maximize its
probability of having its outputs recognized as real, while the

discriminator is trying to minimize this same value. In
practice, the logarithm of the probability is used in the loss
functions instead of the raw probabilities, since using a log
loss heavily penalizes classifiers that are confident about an
incorrect classification, as shown in Figure 2.

III. PROBLEM DESCRIPTION

The basic concept of this research work is to take as input the
textual description of a person, which in this case is an anime
image and to generate five samples of random images from
that random noise which will be similar to the textual
description provided by the user.
Generative Adversarial Networks have been the state of the
art for random generation of images. It is a modified
functional model of a Variational Auto-Encoders (VAEs)
[15]. With a less amount of training and a bit of tuning, the
GAN can generate better images than a VAE. Thereby for
this research work, the Auxiliary Classifier Generative
Adversarial Networks (ACGANs) have been implemented to
generate images for labelled generation.

ACGAN was introduced by AgustusOdenaet al [4]. In the
ACGAN, every generated sample has a corresponding class
label, c ∼ pc in addition to the noise z, both of which are used
by the generator G to generate images Xfake = G(c,z).The
discriminator D gives both a probability distribution over
sources and a probability distribution over the class labels,
P(S | X), P(C | X) = D(X). The objective function has two
parts: the log-likelihood of the correct source, LS, and the
log-likelihood of the correct class, LC. The following two
equations express LS and LC respectively [4]. They are given
by:

LS= E[log P(S = real | Xreal)] + E[log P(S = fake | Xfake)]
(2)

LC = E[log P(C = c | Xreal)]+ E[logP(C = c | Xfake)]
(3)

D is trained to maximize (LS + LC) while G is trained to
maximize (LC − LS). ACGANs learn a representation for z
that is independent of class label [15].
Thus, the pseudo code of the proposed methodology is as
follows:
begin:

X ← data for training
Y ← labelled description of the data
generator ← Stacked model of Dense and

Transposed Convolution layers (up to 4 layers with
stride value of 2 and kernel size of 3) and Batch
Normalization
discriminator ← Stacked model of Dense and

Convolution Layers (up to 4 layers with stride value
of 2 and kernel size of 3) and Maxpooling and Batch
Normalization
combined ←

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

748

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F7988088619/2019©BEIESP
DOI: 10.35940/ijeat.F7988.088619
Journal Website: www.ijeat.org

Stacked model of Generator and Discriminator
Training:

Generate random noise and sampled labels for that
noise.

Train the discriminator to maximize LS + LC.
After certain epochs, stop discriminator training

and train the generator to maximize LC − LS.
Stop the training when a convergence position is

reached.
end training end

IV. IMPLEMENTATION

The proposed algorithm for the research work was
implemented using Python 3.6.810 as the programming tool
and for the machine learning libraries, TensorFlow 1.11
(GPU version)11 was used. Keras12 was also used for its
high-level API with TensorFlow as its backend. Other
dependencies that were included were NumPy13 and
Matplotlib14. In order to decrease the time taken for training
the model, by taking the full advantage of the parallel
processing capabilities of the GPU, the CUDA® parallel
computing platform7 was used. For GPU-accelerated library
of primitives for deep neural networks and highly tuned
implementations for standard routines such as forward and
backward convolutions, pooling, normalization, and
activation layers, the NVIDIA CUDA® Deep Neural
Network (cuDNN)8 library was used.

The application was trained and tested in a computer with
an Intel i5 8th generation processor, 8 Gigabytes of RAM, 1
Terabyte of hard drive space, and a Nvidia GTX 1050Ti
graphical processing unit which had a computation capability
of 5.2.

The very first phase of the implementation of the proposed
method was to collect the dataset which was downloaded
from Brian Chao’s Github repository [16]. The dataset
consists of 21,551 anime faces scraped from Getchu [17],
which are then cropped using the anime face detection
algorithm lbpcascade_animeface [18] has been used for this
research work. All images are resized to 64 × 64 pixels.

The different features like hair color and eye color were
defined based on which feature would be considered to
differentiate the pictures in the dataset. In order to convert the
features of different pictures into matrices, the pictures were
tagged based on different features. This technique was
implemented by taking a finite set of different variants of hair
and eyes as mentioned in table 1 and table 2.

Table 1: The First Set Of Different Variants Of Hair And
Eye Colours Used To Differentiate Between The Pictures

In The Dataset

Hair Orange White Aqua Gray Green Red
Eyes Gray Black Orange Pink Yellow Aqua

Table 2: The Second Set Of Different Variants Of Hair
And Eye Colours Used To Differentiate Between The

Pictures In The Dataset

Hair Purple Pink Blue Black Brown Blonde
Eyes Purple Green Brown Red Blue

Then every image in the dataset has been iterated through
comparing their features with the finite set already defined.
When a successful match was found, the index of that feature
was put in the finite dataset and was used for tagging the
array for the respective image.The next phase of the
implementation was training the model. The model consisted
of two neural networks, the generator and the discriminator.
The generator was designed with four transposed convolution
layers and a dense layer whereas the discriminator was
designed with convolution layers and maxpooling layers.
Both the neural network models had used the Adam
Optimizer as the optimization function [22].

Figure 3: Face Images Generated At The End Of 10,000

Epochs
During training, when the generator was trained, the
discriminator was not trained and vice versa. The generator's
work was to use random noise to generate images and then it
was mapped with the sampled labels which were then fed into
the discriminator. The discriminator and the generator were
trained to tally against each other and then come down to a
convergence point. Once the convergence point was reached,
the training was stopped.

Figure 4: The loss function graph of the Generator Model
The proposed model was trained for 25,000 epochs to
generate images each of resolution 64 × 64 pixels. Figure 3
shows the images generated at the end of 10,000 epochs.
Figure 4 depicts the loss function graph of the generator
model. It is observed from the graph that the loss function is
minimized because during compilation of the application, the
negative value of the generator loss function (LC – LS) was
taken into account and thereby generating a minimization
graph after the complete
epoch.

http://www.ijeat.org/

Generation of Facial Drawings Using Generative Adversarial Networks

749

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F7988088619/2019©BEIESP
DOI: 10.35940/ijeat.F7988.088619
Journal Website: www.ijeat.org

On the other hand, figure 5 depicts the loss function graph of
the discriminator model. It is observed again that the loss
function is minimized because during compilation of the
application, the negative value of the loss function (LS + LC)
was chosen and thereby generating a minimization graph
after the complete epoch.

Figure 5: The Loss Function Graph Of The

Discriminator Model
The model was then tested by taking random inputs from the
users and then five samples of images based on the given hair
color and eye color were generated for every test input.
Figure 6 (a, b, c, d) shows different generated images based
on different inputs.

Figure 6: Samples Of Images Generated
Under User-Defined Conditions.

(a) black hair and blue eyes
(b) red hair and green eyes
(c) white hair and different colours of eyes
(d) pink hair and different colours of eyes

V. FUTURE IMPROVEMENTS AND CONCLUSION

In the present research work, the automatic generation of

the anime character has been explored. By combining a clean
dataset with GAN training strategies, a model was
successfully built and the model can generate facial images of
anime characters. However, this model has some constraints
which are mentioned below:

The primary constraint is that only anime girls could be
generated as the dataset used here was only of anime girls.
Though with minor modifications in the algorithm and using
a dataset of real face images would help the model generate
images of real people based on their features.

The next constraint is related to the features which were
considered here. For simplification, only the hair color and
eye color were chosen as the inputs to generate an image.
However, this model can be improved to take more features,
like, the position of the mouth, spectacles, skin tone, hair
length, etc., as various inputs. Incorporating more features
would help the model to generate images which would have
been more accurate to the description.

Finally, it was observed that the output images were of
much lower resolution. This was because of the absence of
SRGAN. To improve the quality of the image, this model can
be trained along with the SRGAN [19] or the SRCNN [20]

system which was optimally designed for high-quality
resolution image generation. Moreover, as the quality or the
resolution of the image increases, its distinguishable features
have also increased. Thus, the discriminator can differentiate
between a fake image and a real image with a higher
resolution facility. DiscoGAN [21] can also be applied for
different image perspective.Thus, if all these improvements
can be made to this model, this model can be even better than

what it has been put forward here and can even be used in
real-life situations, and help in the judiciary and legal
proceedings.

REFERENCES

1. Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, SherjilOzair, Aaron Courville, YoshuaBengio,
“Generative Adversarial Networks”, In Proceedings of the 27th
International Conference on Neural Information Processing Systems –
Volume 2, pp. 2672 – 2680, December, 2014.

2. Identi-Kit Solutions | Advanced Facial Composite Software.
http://identikit.net/, last accessed on 09.06.19, 8:30 pm.

3. Crime Data | Statistics and Data.https://dataunodc.un.org/crime, last
accessed on 25.06.19, 8:00 pm.

(a)

(c)
(d)

http://www.ijeat.org/
http://identikit.net/
https://dataunodc.un.org/crime

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-8 Issue-6, August, 2019

750

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number F7988088619/2019©BEIESP
DOI: 10.35940/ijeat.F7988.088619
Journal Website: www.ijeat.org

4. Augustus Odena, Christopher Olah, Jonathon Shlens,“Conditional
Image Synthesis with Auxiliary Classifier GANs”, In Proceedings of the

34th International Conference on Machine Learning, pp. 2642 – 2651,
2017.

5. Naveen Kodali, Jacob Abernethy, James Hays, Zsolt Kira. On
Convergence and Stability of GANs. arXiv:1705.07215v5.

6. YanghuaJin, Jiakai Zhang, Minjun Li, Yingtao Tian, Huachun
Zhu, Zhihao Fang. Towards the Automatic Anime Characters Creation
with Generative Adversarial Networks.arXiv:1708.05509v1.

7. CudaParallel Computing Platform for Developers | NVIDIA,
https://www.nvidia.in/object/cuda-parallel-computing-in.html, last
accessed on 26.06.19, 8:40 pm.

8. NVIDIA cuDNN | NVIDIA Developer,
https://developer.nvidia.com/cudnn, last accessed on 26.06.19, 8:40 pm.

9. Diego Gomez Mosquera. GANs from Scratch 1: A deep introduction.
With code in PyTorch and
TensorFlow,https://medium.com/ai-society/gans-from-scratch-1-a-deep
-introduction-with-code-in-pytorch-and-tensorflow-cb03cdcdba0f, last
accessed on 26.06.19, 9:00 pm.

10. Python Release Python 3.6.8 | Python.org,
https://www.python.org/downloads/release/python-368/, last accessed
on 27.06.19, 7:00 pm.

11. TensorFlow,https://www.tensorflow.org/, last accessed on 27.06.19,
7:00 pm.

12. Home – Keras Documentation,https://keras.io/, last accessed on
27.06.19, 7:15 pm.

13. NumPy – NumPy,https://www.numpy.org/, last accessed on 27.06.19,
7:15 pm.

14. Matplotlib: Python plotting — Matplotlib 3.1.0 documentation,
https://matplotlib.org/, last accessed on 27.06.19, 8:15 pm.

15. Diederik P Kingma, Max Welling,“Auto-Encoding Variational Bayes”,
In Proceedings of the 2nd International Conference on Learning
Representations, 2014.

16. Brian Chao (Mckinsey666),
“Anime-Face-Dataset”,https://github.com/Mckinsey666/Anime-Face-D
ataset, last accessed on 28.06.19, 6:15 pm.

17. Getchu.com,http://www.getchu.com/, last accessed on 28.06.19, 6:30
pm.

18. nagadomi.lbpcascade_animeface,
https://github.com/nagadomi/lbpcascade_animeface, last accessed on
28.06.19, 6:40 pm.

19. Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew
Aitken, AlykhanTejani, Johannes Totz, Zehan Wang, Wenzhe
Shi,“Photo-Realistic Single Image Super-Resolution Using a Generative
Adversarial Network”, In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, July, 2017.

20. Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang,“Image
Super-Resolution Using Deep Convolutional Networks”,IEEE

Transactions on Pattern Analysis and Machine Intelligence, Volume 38,
Issue 2, pp. 295 – 307, June, 2015.

21. Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, Jiwon
Kim,“Learning to Discover Cross-Domain Relations with Generative
Adversarial Network”, In Proceedings of the International Conference

on Machine Learning, Volume 70, pp. 1857 – 1865, August, 2017.
22. Diederik P. Kingma, Jimmy Ba. Adam: A Method for Stochastic

Optimization, In Proceedings of the 3rd International Conference on
Learning Representations, May, 2015.

AUTHORS PROFILE

Mr. Debabrata Datta pursued Master of Technology

from University of Calcutta, India and he is currently
pursuing his Ph.D. in Technology from the same
university. He is an Assistant Professor in the department
of Computer Science, St. Xavier’s College (Autonomous),

Kolkata, India He is a life member of IETE. He has
published more than 25 research papers in different reputed international
journals and conferences. His main research interest is in the field of Data
Analysis. He has more than 11 years of teaching experience and has more
than 5 years of research experience.

Mr. Abhradeep Dey has completed his B.Sc. with
honours in Computer Science from St. Xavier’s College

(Autonomous), Kolkata, India.

Mr. Adityam Ghosh is a graduate in Computer Science
from St. Xavier’s College (Autonomous), Kolkata, India.
He has published a research paper on recommender system
in a reputed international journal.

Mr. Rishabh Tiwari has completed his B.Sc. with honours
in Computer Science from St. Xavier’s College
(Autonomous), Kolkata, India.

http://www.ijeat.org/
https://www.nvidia.in/object/cuda-parallel-computing-in.html
https://developer.nvidia.com/cudnn
https://medium.com/ai-society/gans-from-scratch-1-a-deep-introduction-with-code-in-pytorch-and-tensorflow-cb03cdcdba0f
https://medium.com/ai-society/gans-from-scratch-1-a-deep-introduction-with-code-in-pytorch-and-tensorflow-cb03cdcdba0f
https://www.python.org/downloads/release/python-368/
https://www.tensorflow.org/
https://keras.io/
https://www.numpy.org/
https://matplotlib.org/
https://arxiv.org/search/stat?searchtype=author&query=Kingma%2C+D+P
https://arxiv.org/search/stat?searchtype=author&query=Welling%2C+M
https://github.com/Mckinsey666/Anime-Face-Dataset
https://github.com/Mckinsey666/Anime-Face-Dataset
http://www.getchu.com/
https://github.com/nagadomi/lbpcascade_animeface
https://arxiv.org/search/cs?searchtype=author&query=Kingma%2C+D+P
https://arxiv.org/search/cs?searchtype=author&query=Ba%2C+J

