Condition and Monitoring Of Boiler Parameters by Cbm Using Raspberry Pi Controller

S. Jaisiva, V. Vijayabharathi, P. Vel, S. Saran

Abstract - In today's modern world, mechanical strength is just one of the many criteria that determine the superiority of any boiler. There are many other more important aspects such as efficiency, 24-hour availability, ease of maintenance, environmental compliance, etc. Modern high-pressure boilers that are equipped with areas optimized for heat transfer due to its nominal load require some of the important operating parameters to be carefully checked to maintain constant production. Thought instrumentation is a very broad topic to discuss, this document highlights some of the tools and control circuits necessary for safe, economical and reliable operation of boilers. In this research project we are monitoring and controlling six important parameters with which the output of the process will be stable. Here we are using parameters sensors: oxygen sensor, humidity sensor, flow sensor, current sensor. This project uses the RASPBERRY PI microcontroller, the output of the sensors produces the analog signal, this signal directly connected to the Raspberry pi microcontroller. The controlled parameters tend to stabilize ensuring the quality of the process in the boiler.

Index terms: Raspberry pi, Flow sensor, current sensor, humidity sensor.

I. INTRODUCTION

While it is theoretically possible to operate a boiler with manual control, the operator must maintain a tedious, constant for disturbances and parameter variations. It takes time for the boiler to respond to a correction and this leads to an excessive correction with further disturbance of the boiler. An automatic controller, once properly adjusted, will make the correct adjustment quickly to minimize rollovers and control the system more accurately and reliably. In addition to mechanical resistance, it is the logic and control equipment that decides the safety and reliability of any modern boiler. There are different types of processes in which the parameters must be checked in the specified range. So in this project we focused on some parameters, which are described below.

A. The boiler air flow can be a monitoring and control system (flow sensor)
B. Control and control of the forced draft fan (current sensor)
C. Humidity monitoring system (humidity sensor) For heavy oil fired boilers, the fuel needs to be heated to reduce viscosity and improve atomization. Low fuel temp can result in incomplete combustion, unstable flame and backfiring. Fuel temp monitoring system should stop the burner firing below safe temperature. Since different process requires different operating temperature range, so in this as temp. Varied initially but using controller we maintained the temperature range. Keeping proper water level in the boiler is of paramount importance from boiler safety point of view. This instrument maintains necessary operating water level by controlling the water inflow. In this we are using level sensor which detects the level of the liquid in the boiler. Here we use two level sensors one is low level & other is top level, which show the lower liquid & higher liquid level, So that the liquid level can be maintained within a range. This will ensure availability of air for combustion. Unavailability/ shortage of air results in similar situations mentioned above. The burner should trip automatically in case in case air is not sufficiently available. So to control the pressure of air within a range specified for process, we use pressure sensor which will maintain the pressure level.

II. FLOW SENSOR

The air mass sensor measures the mass of air introduced by the engine ("mass of the air flow") with great precision. The signal produced by the air mass sensor is used to calculate the quantity of fuel and, in the case of diesel engines, also to check the exhaust gas recirculation. It is an important component both in the reduction of the discharge and in the supply of air. A defective or dirty air mass sensor can provide false input signals to the engine's central control unit, which in turn sends false information to other components. In the case of turbo diesel engines, the air mass sensor is subjected to particularly high loads due to the fact that both the air flow rate and the air speed are very high.

Fig.1. Flow Sensor

III. CURRENT SENSOR

They provide economical and precise solutions for the detection of AC or DC current in industrial, commercial and communication systems. Typical applications include motor control, load sensing and management, switching power supply and overcurrent protection. The device consists of a precise linear Hall sensor circuit, at low offset, with a conduction path in copper located near the surface. The accuracy of the device is
optimized thanks to the close proximity of the magnetic
signal to the Hall transducer. A precise and proportional
voltage is provided by the low offset, stabilized by the
chopper, which is programmed for accuracy after packaging.
When a growing current flows through the conduction path
of the primary copper (from pins 1 and 2 to pins 3 and 4),
which is the path used for current detection. The internal
resistance of this conductive path is 1.2 mΩ typical, with a
low power loss. The thickness of the copper conductor
allows the device to survive up to 5 × overcurrent
conditions. The conductive path terminals are electrically
isolated from the sensor leads (pins 5 to 8). This allows the
current sensor to be used in applications that require
electrical isolation.

IV. HUMIDITY SENSOR

The relative humidity sensor module is composed of a
capacitive humidity sensor, a CMOS capacitor to the
frequency converter and an EEPROM used to contain the
calibration factors. Due to the characteristics of the
condenser type humidity sensor, the system can react to very
rapid changes in humidity. Each sensor is calibrated twice in
two different precise humidity chambers, two unique
modules related to the sensor are stored on the EEPROM on
the module. The data is used to calculate the humidity.

FEATURES

• Relative humidity sensor
• Two calibrated points with condenser type sensor,
excellent performance
• Type of frequency output, easily integrated with
 the user's application system
• Very low energy consumption
• No additional components needed

Fig.2. Humidity Sensor

V. LCD

The data from the environment will be measured by the
sensor and the Data that are collected will be sending to the
receiver. The data that has been read will be displayed on
the LCD screen.

LCD 16x2:

A liquid-crystal display (LCD) is a flat panel display,
electronic visual display, or video display that uses the light
modulating properties of liquid crystals. LCD displays
utilize two sheets of polarizing material with a liquid crystal
solution between them. An electric current passed through
the liquid causes the crystals to align so that light cannot
pass through them. Each crystal, therefore, is like a shutter,
either allowing light to pass through or blocking the
light.LCD (Liquid Crystal Display) screen is an electronic
display module and find a wide range of applications. A
16x2 LCD display is very basic module and is very
commonly used in various devices and circuits. These
modules are preferred over and other multi segment LEDs.

VI. RASPBERRY PI

The Raspberry Pi is not a single specific computer. Rather,
it is a family of single board computers (SBC). Each SBC
has different properties and capabilities. The first iteration of
Raspberry Pi - the model 1 A - had a single-core ARM
processor, 256MB RAM, 1 USB port, composite video out,
HDMI output, and no networking capabilities. The latest
model, the Raspberry Pi 3 model B, contains a quad-core
processor, 1GB RAM, four USB ports, ethernet, in-built Wi-
Fi, and a 40-pin header for controlling external
circuits.Simply a special computer device used for industrial
control system. They are used in many industries such as oil
refineries, manufacturing lines, conveyor system and so on.
The components that make a raspberry pi work can be
divided into four core areas.
The raspberry pi consist of input voltage of 90 to 264VAC
with frequency range 47 to 63 HZ.

FEATURES

• Low price
• Low power
• High availability
• High reliability
• Tested on millions of Raspberry Pis produced to date
• The IO pins of the module have a hard browning of
 35u

VI. EXISTING SYSTEM

The existing system performs better than the manual system.
The main advantages for the system are that it can be
targeted towards a small target and then feedback data
 inaccurately
 to the control system. However, the controller
is the sensors must be maintained correctly and regularly as
they behave in dangerous conditions but the operation the
speed is slightly low. So in this existing project some
parameters are monitored and controlled using different
sensors from the PIC controller, in order to produce an
effective product through the process using the boiler
system. And all the parameters are checked in order of
values.

BLOCK DIAGRAM
In our proposed system, in this hardware description, the mainly in our project, the hardware are interfaced with raspberry pi microcontroller that is processor we are using microcontroller raspberry pi. In this raspberry pi, we are connected this sensor first flow sensor, humidity sensor, oxygen sensor, current sensor. These sensors are interfaced with the raspberry pi. According to the input of the sensor, the output to be increasing the air intake and decreasing the air intake that is called FD fan speed in this hardware section. All the sensor input are connected to raspberry pi the output again feeded to the speed of the motor. The raspberry pi is supplied by the 5V Supply and the software is python based language. In this language, we return a program and it is inserted in the raspberry to measure the output.

BLOCK DIAGRAM

![Fig. 5. Block Diagram With Pic Microcontroller](image)

DRAWBACKS OF EXISTING SYSTEM

- Low operating speed.
- Component failure.
- Highly reliable power circuits are required.
- Single operation to be monitored.
- Need high maintenance.

REGULATOR:

Regulator has been interfaced with the different sensor with respective regulator to be connected. Regulator will be used for the development of the prototype using the regulator are vary the input quantity of the sensor. If we increase the quantity range controlling action has been coming play role we decrease the quantity play role based upon the changes in the regulator automation to be takes place in the system.

![Fig. Regulator](image)

VII. PROPOSED SYSTEM

In this hardware description, mainly in our project, the hardware is interfaced with the raspberry pi microcontroller this is the processor that we use raspberry pi microcontrollers. In this raspberry pi we are first connected to this sensors flow sensor, humidity sensor, oxygen sensor, current sensor. These sensors are interfaced with the raspberry pi. According to the sensor input, the output increases the air intake and decreases the air intake called FD fan speed in this hardware section. All sensor inputs are connected to the raspberry pi again powered at motor speed. The raspberry pi is provided by 5V Supply and the software is based on Python language. In this language, we return a program and it is inserted in the raspberry to measure the output.

BENEFITS OF THE PROPOSED SYSTEM

- Efficient operation.
- Requires low power.
- Automatic control
- It takes up less space
- Maintenance is not required

VIII. RESULT

The coal to be daily utilised by the thermal power plant before they can be stored in the coal storage is a bunker. At any emergency condition the conveyor will be stopped coal has been taken from the coal storage yard. We developing the projects for remove the bunkers from the thermal power plants because the rainy season, coal humidity will be increased. So the efficiency of the plant to be decreased and life time of the equipment also reduced. From this difficulty, we can ready the prototype for remove the moisture content in the coal by vary the forced draught fan speed to improve the efficiency and life time equipment. This control will be taken by the controller of using a latest version of raspberry pi for reliable operation in the system. And this raspberry pi has more number of ports to interfacing the many peripheral devices to be connected with the controller. Coding of the controller will be using different types of language be coded we have code a python based language in the controller.

IX. CONCLUSION

Raspberry pi are well-adaptable to a range of automation tasks. Raspberry pi incorporated for any existing system which required for...
Condition and Monitoring Of Boiler Parameters by Cbm Using Raspberry Pi Controller

automation. As an endeavor to this effect, we tried our level best to incorporate raspberry technology in parameters monitor system for its all operations. We are successful in accomplishing this task and in this way; we gained knowledge about using raspberry pi system in an industrial environment. The boiler operation was satisfactory and the controlling action appropriately. This system is cost effective and accurate results can be obtained. The system implemented for the boiler automation and can be used in any application. Further system will be interfaced with the LCD.

Future Scope: Improvements to these existing system operations are implemented by eliminating the old monitoring system, introducing different types of sensors for condition-based monitoring. Similarly, it is possible to introduce further improvements by introducing very fast and automatic operations.

REFERENCES

4. Aleksandar I. Ribić, “Functional and dynamical model of drum type boiler steam pressure and experimental verification”.
10. Aleksandar I. Ribić, “Functional and dynamical model of drum type boiler steam pressure and experimental verification”.