Performance Measures of Bridgeless Sepic Converter and Boost Converter

T.V.Narmadha, V.krithika, K.sivakumar

ABSTRACT--- Bridgeless single-ended number one inductor converter (SEPIC) suffers from immoderate conduction loss at the enter bridge diode. The ones AC-DC converters incorporate some of non-linear devices which reduce the system power hassle and introduce harmonics in the strength device essential to adverse results. Consequently, it’s far crucial to apply a suitable strength problem correction approach to scenario the deliver cutting-edge-day. The Bridgeless Sepic Converter (SC) is proposed as a way to the troubles addressed it truly is provided in this paper. In evaluation to the traditional beauty percentage converter, this Bridgeless SC topology is extra effective. This paper specializes within the bridgeless improve, Sepic, primarily based certainly AC-DC converters. A evaluation of these topologies are furnished in phrases of THD (elegant harmonic distortion) inside the supply current-day, supply strength trouble and supply distortion element, regular performance. Simulations of the severa AC-DC circuit configurations are done in MATLAB/SIMULINK.

Key terms- SC-Sepic Converter, AC-Alternating current, DC-direct present day-day, THD-massive harmonic distortion, percentage-power element correction.

I. INTRODUCTION

In cutting-edge strength super troubles is the fundamental problem in our packages. To do away with the trouble various topology had been proposed[1]. Typically in a AC-DC converter due to the switching device excessive voltage get dressed and additionally there may be a presence of commonplace mode noise due to interference. To conquer this trouble, Bridgeless AC-DC converter is used inside the software software software [2].This percent allows the minimal permit of contemporary allow to go along with the flow thru the switching tool. However in Bridgeless increase converter have the downside that the DC output voltage is higher than the peak enter voltage. Due to this the Bridgeless SEPIC converter is extra inexperienced than the conventional circuit.in this converter diploma the THD, beautify the electricity detail, decreasing the harmonic distortion, ripple cutting-edge-day and avoid interference inside the circuit[5]

II. BRIDGELESS SEPIC CONVERTER

To overcome those limitations in bridgeless decorate converter, the bridgeless single-ended number one-inductor converter (SEPIC) is carried out. A bridgeless SEPIC is essentially a lift converter observed via a dollar-growth converter, consequently it is just like a conventional dollar-decorate converter, but has benefits of getting non-inverted output the use of a chain capacitor to couple strength from the enter to the output (and consequently can reply extra gracefully to a quick-circuit output), and being capable of proper shutdown: at the equal time as Figure1 switch is have become off, its output drops to 0 V, following a fairly hefty quick promote off of charge.

Figure 1: Bridgeless SEPIC converter

III. DESIGN SPECIFICATION

Table1 Design specification for converter

<table>
<thead>
<tr>
<th>S.no</th>
<th>Specification name</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main voltage range( $V_{in}$)</td>
<td>230V,AC</td>
</tr>
<tr>
<td>2</td>
<td>Line frequency( $f_L$)</td>
<td>50Hz</td>
</tr>
<tr>
<td>3</td>
<td>Output voltage( $V_O$)</td>
<td>460V</td>
</tr>
<tr>
<td>4</td>
<td>Output power rating( $P_o$)</td>
<td>20W</td>
</tr>
<tr>
<td>5</td>
<td>Switching frequency( $f_s$)</td>
<td>20kHz</td>
</tr>
</tbody>
</table>

Table1 Design specification for a bridgeless SEPIC converter

$$V_C = \frac{V_{in}}{1-\delta}$$ ................................................. (1)

The capacitor Co must be large enough to minimize the voltage ripple,

$$C_o = \frac{P_o}{4f_V^2dV_0}$$ ................................................. (2)

By using duty ratio $\delta$

$$V_{out} = \frac{\delta}{1-\delta}V_{in}$$ ................................................. (3)

Revised Manuscript Received on 14 February, 2019.

Dr. T.V.Narmadha, M.E, Ph.D., Professor Department of EEE St.Joseph’s College of Engineering, Chennai-119, India.

V.krithika, ME (Power Electronics and drives) St.Joseph’s College of Engineering, Chennai-119, India.

K.sivakumar, Assistant professor(EEE) St.Joseph’s College of Engineering, Chennai-119, India
IV. SIMULATION & RESULTS OF BRIDGELESS SEPIC CONVERTER & RESULTS

The Powergui block that opens a graphical user interface for the electrical circuits. The simulation circuit diagram is shown in Figure 2.

Figure 2 : Simulink model of bridgeless sepic converter

Because of this the conduction losses are extensively reduced at the same time as in assessment to standard percentage circuits. The circuit operation of the converter is said in detail and closed loop simulation of the circuit is completed. From the simulation consequences, it’s far easy that the input voltage and enter reducing-edgemodern are nearly in section and the strength trouble is immoderate. For the equal enter voltage of 230V, the bridgeless converter produces the output of 480V and furthermore the ripple is decreased.

V. INPUT WAVEFORM AND OUTPUT WAVEFORM

A. INPUT VOLTAGE AND CURRENT WAVEFORM

The converter topology end up simulated inside the MATLAB/ SIMULINK software program program for validation of topology. Decide three shows the input voltage and input modern-day-day waveform.

B. OUTPUT VOLTAGE AND CURRENT WAVEFORM

Figure 4: output voltage and current of bridgeless SEPIC converter

The converter topology have turn out to be simulated in the MATLAB/ SIMULINK software program utility software program utility for validation of topology. Decide 4 shows the input voltage and input modern-day-day waveform.

A bridgeless SEPIC strength element Correction circuit has been provided in which the input diode bridge rectifier is removed and thereby the form of task additives is decreased. In the end of each half of cycle a maximum of eight additives conduct. As a stop save prevent surrender stop cease result the conduction losses are significantly reduced at the identical time as in assessment to conventional % circuits. From the simulation effects, it is easy that the input voltage and enter contemporary-day-day are almost in section and the power detail is excessive.

VI. HARMONIC SPECTRUM

Figure 5: Harmonic Spectrum for Bridgeless SEPIC converter

In Figure 5 harmonic spectrum for bridgeless Sepic converter the THD is 11.4 and the FFT value is 2.714Hz. This circuit would be most suitable to be used as a switch mode power supply application for low power equipments, especially those requiring high quality input power.
VII. TOTAL HARMONIC DISTORTION

The THD result in the Figure 6 shows that the Bridgeless SEPIC converter have higher efficiency and reduced voltage stress.

Table 2. THD and Power Factor at different loads for bridgeless SEPIC converter

<table>
<thead>
<tr>
<th>LOAD</th>
<th>THD(%)</th>
<th>POWER FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>100w</td>
<td>11.42</td>
<td>0.9934</td>
</tr>
<tr>
<td>75w</td>
<td>11.76</td>
<td>0.9931</td>
</tr>
<tr>
<td>50w</td>
<td>12.31</td>
<td>0.9925</td>
</tr>
<tr>
<td>25w</td>
<td>14.20</td>
<td>0.990</td>
</tr>
</tbody>
</table>

In desk 2 the strength wonderful statement at hundreds are showed. From the assessment it's far decided that the THD will growth with the decrease in load. Moreover the power element decreases barely with the decrease in load.

A prototype version of the Bridgeless SEPIC converter is designed and fabricated on a dot board. The manipulate circuit for the converter is also designed. The input to the electricity circuit is 230V 50 Hz AC. The circuit come to be designed for 100W load.

VIII. BRIDGELESS BOOM CONVERTER

Bridgeless rectifier consists of switches S1 and S2 for controlling the output voltage. On the same time as in evaluation to the traditional topology, it makes use of more inductors and capacitor to build up the thermal commonplace everyday cutting-edge everyday regular not unusual common wellknown overall performance. To function the converter in regular u.s. Mode the following assumption want to be made: want to embody natural sinusoidal input voltage, 0 crossing want to be completed. To hold the voltage for entire length in line the capacitor fee to be decided on may be very large. Bridgeless increase Converter, is differentiated be three forms of circuit, via using the converter the following circuit is described.

SIMULATION assessment FOR BRIDGELESS % enhance CONVERTER

The bridgeless increase converter has drawback of getting huge not unusual mode noise than the opportunity converter. But in case of bridgeless decorate converter output ground is attached to AC supply thru the body diode of switch best within the route of remarkable half of cycle, on the same time as within the direction of horrible half of cycle the output.
In Figure 8, the output voltage and current are measured.

X. TOTAL HARMONIC DISTORTION

In Figure 9, THD result for bridgeless boost converter is measured.

Table 4: THD and power factor at different load for bridgeless boost converter

<table>
<thead>
<tr>
<th>LOAD</th>
<th>THD(%)</th>
<th>POWER FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>100w</td>
<td>115.42</td>
<td>0.9345</td>
</tr>
<tr>
<td>75w</td>
<td>101.76</td>
<td>0.9938</td>
</tr>
<tr>
<td>50w</td>
<td>92.31</td>
<td>0.9929</td>
</tr>
<tr>
<td>25w</td>
<td>84.20</td>
<td>0.8654</td>
</tr>
</tbody>
</table>

In Table 4, the THD and energy element for notable load bridgeless beautify converter is calculated. In evaluation to bridgeless Sepic converter the beautify converter power detail may be very hundreds masses a whole lot a notable deal an entire lot a good buy plenty an awful lot less and useless.

III. Evaluation effects

On the above assessment for the identical input voltage, the output voltage and favored significant normal normal common overall performance is measured and in assessment inside the tabulation given beneath desk 5. For the enter voltage of 230V, the output voltage for Bridgeless SEPI Cconverter is 460V and 320V for BOOST converter. So the voltage stress in SEPIC converter is excessive at the equal time in assessment to the decorate topology.

Table 5: Comparison results of Bridgeless converter topology

<table>
<thead>
<tr>
<th>Type of converter</th>
<th>Input voltage</th>
<th>Output voltage</th>
<th>THD</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEPIC</td>
<td>230V</td>
<td>460V</td>
<td>2.417</td>
<td>98%</td>
</tr>
<tr>
<td>BOOST</td>
<td>230V</td>
<td>320V</td>
<td>15.235</td>
<td>82%</td>
</tr>
</tbody>
</table>

XI. CONCLUSION

At the above consequences, for the identical input voltage of 230 V, the THD is 15% for beautify converter and more than one% for SEPI converter. The energy trouble is zero.99 for a bridgeless SEPI converter and for boom converter 0.8 based totally absolutely absolutely truly surely in fact on the evaluation, the SEPI converter is to be had for the usage of it in motor software program program software software program application software program.

REFERENCE: