Microstrip Low Pass Filter using Defective Ground Structures

Jilna T Joy, Sumi M, Harikrishnan A. I.

Abstract: - Low pass filter forms the primary and vital component of a transceiver system. Three different methods to design compact microstrip low pass filter are discussed in this paper. All three prototypes contain defective ground structure (DGS) in the ground plane. Type I filter structure is designed with three fingered interdigital slot the ground plane. Type II low pass filter design contains circular DGS pattern, while type III low pass filter consist of many fingered interdigital slots on ground plane. Interdigital slot consists of metal fingers, which enhances the performance of the filter. The resonant frequency can easily be changed by tuning the length of the metal fingers. Based on the comparative study, it is found that the insertion loss is minimum for type III filter design i.e. 0.1dB. The return loss is found to be 26dB, 35.8dB and 21dB for type I, type II and type III low pass filter respectively.

Keywords: Low pass filter, Defective ground structure, Interdigital slots, Insertion loss, Return loss

1. INTRODUCTION

Microwave low pass filters are most important components in transceiver circuits, to suppress harmonics and spurious signals. An ideal low pass filter is one with minimum insertion loss and high return loss. By providing transmission at frequency within the passband and attenuation in the stopband, a filter can be used to control the frequency response at a certain point in microwave/RF system. Modern wireless communication system demand filter with miniature size, ultra-wide stopband, minimum insertion loss and enhanced selectivity. Compact size low pass filter is one of the major components in many communication systems. Conventional low pass filters provide gradual frequency response and hence require more number of sections to achieve required performance. This is not desirable, as the size and insertion loss of the filter increases. Realization of microwave low pass filter using DGS have drawn great attention due to its advantages like higher power handling capability and enhanced performance. DGS is realized by etching slots on the bottom layer which is the ground metal layer. Different size and shapes of DGS can be used. These slots provide better capacitive coupling. The equivalent circuit for a DGS is a parallel-tuned circuit in series with the transmission line to which it is coupled as shown in figure 1.

Revised Version Manuscript Received on May 15, 2017.

Jilna T Joy, NSS College of Engineering, Palakkad (Kerala), India. E-mail: jilnasoy@gmail.com
Sumi M., NSS College of Engineering Palakkad (Kerala), India. E-mail: Sumi.harikrishnan@gmail.com
Harikrishnan A. I, NSS College of Engineering, Palakkad (Kerala), India. E-mail: harikrishnan.ai@gmail.com
II. LOW PASS FILTER DESIGN

Type-I

The layout of proposed type I low pass filter top plane and bottom plane is shown in figure 2(a) and 2(b). The top plane consists of two I-shaped geometry between 2 rectangular patches. The substrate used is FR4_epoxy with a relative dielectric constant of 4.4 with a thickness of 0.6mm. The dimensions of the filter are 12mm×8nm×0.6mm.

![Figure 2: Layout of the type I low pass filter](image)

The bottom plane contains defective ground structure with 3 fingered interdigital slots on the ground layer. The metal finger has dimension 4.5mm×1mm. The frequency response of the filter can be varied by varying the length of these slots and inductance can be varied by varying the width of the metal finger.

The simulated results are shown in figure 3(a) and 3(b). It is evident that the insertion loss of the filter is 0.3dB, with a 3dB cut-off at 4.9GHz. The return loss is found to be 26dB.

![Figure 3: Simulated S-parameters of type I low pass filter](image)

Type-II

The bottom plane of proposed type II low pass filter shown in figure 4(a). The top plane is same as shown in figure 2(a). Circular DGS patterns with two different radiuses are used at the ground metal plane. The radius of bigger circle and smaller circle are 2mm and 1 mm respectively.

![Figure 4: Layout of bottom plane of type II low pass filter](image)

It is found that the return loss has enhanced to 35.8 dB and the insertion loss enhanced to be 0.2 dB in the passband. The 3 dB cut-off is found to be at 4.4 GHz. The simulated results are shown in figure 5(a) and 5(b).
Figure 4: Simulated S-parameters of type II low pass filter

Figure 5: Layout of bottom plane of type III low pass filter

Figure 6: Simulated S-parameter for type III low pass filter

III. CONCLUSION AND FUTURE WORK

Three different methods to design a compact low pass filter are discussed in this paper. Type I filter is designed using three fingered interdigital defect on the ground plane. Type II filter makes use of circular DGS pattern on the ground plane. Type III low pass filter is designed using many fingered interdigital slot on the ground plane. The results are compared and it was found that the insertion loss performance enhanced for type III low pass filter. Though effort was to enhance the filter performance with the use of DGS slots in the ground plane, there are still more scope for novel designs. DGS with other size and arrangements can be etched on the ground plane that can enhance the performance of the low pass filter. The proposed filter can be used for long-distance radio telecommunication, radar and satellite communication applications.

ACKNOWLEDGMENT

The authors would like to thank NSS College of Engineering for all facilities provided to complete this work. The authors would also like to thank the department of Electronics and communication, specially the head of the department Prof. Kala L, for the support provided.

REFERENCES

5. Fu-Chang Chen, Hao-Tao Hu, Jie-Ming Qiu Qing-Xin Chu,”High-Selectivity Low-Pass Filters With Ultrawide Stopband Based on Defected Ground Structures”, IEEE transaction on components, manufacturing and packing technology, 2015
Microstrip Low Pass Filter using Defective Ground Structures


Jilna T Joy received B.E degree from Visveswaraya Technological University, Belgaum in 2013. She is currently pursuing her M.Tech in Communication engineering from NSSCE, Palakkad, Kerala. Her areas of interest include microwave circuits and engineering.

Sumi M received the B.Tech degree in Electronics and Communication from the Cochin University of Science and Technology (CUSAT) in 2003, and the M.Tech degree in Electronic Design from the Indian Institute of Science (IISc) in 2009. She is currently working towards her Ph.D. degree at School of Engineering, CUSAT. Her research interests are designing of Chip less RFID’s, Microwave Low Pass Filters and multiband antennas.

Harikrishnan A I was born in India. He received the B.Tech degree in Electronics and Communication from Mahatma Gandhi University in 2000 and M.Tech degree in Microelectronics and VLSI in 2009 from Indian Institute of Technology, Kharagpur. His research interest includes reconfigurable microwave circuits and Compact Planar filters.