Review on Cryptoleq: Single Instruction Set Abstract Machine

Meenal P. Talekar, Ravindra Kale

Abstract: Today data communication mainly depends upon digital data communication, where is data security is prior requirement which become crucial now days in every sector. So in order to protect it, various methods and Algorithm have been implemented. Cryptography combines Science, Mathematics, Computer Engineering and Networking. The purpose of this research paper is (i) to find the best cryptographic algorithm for computations (ii) to study the Cryptoleq system which (iii) and finally the comparison of performance of algorithm with Cryptoleq and without Cryptoleq.

Keywords: single instruction machine, heterogeneous computer, mathematical computations, encryption.

I. INTRODUCTION

The Contemporary computing paradigms used in cloud and pervasive computing, and become increasingly popular because they allow outsourcing computation. The owner can get the legitimate information because Cryptographic primitives such as homomorphic encryption can be leveraged to address those privacy concerns, and control of the data. From secure cloud computation and verifiable computation to multiparty computation and message authenticators. As soon as fully homomorphic encryption (FHE) became theoretically possible the academic interest in FHE applications has increased accordingly. From secure cloud computation and verifiable computation, to multiparty computation and message authenticators. In addition, partial homomorphic encryption (PHE) has recently been leveraged for verifiable computation. Homomorphic encryptions allow complex mathematical operations to be performed on encrypted data without compromising the encryption. While preserving relationships between elements of different data sets the homomorphic describes the transformation of one data set into another data set. In addition, partial homomorphic encryption (PHE) has been used in variable computations.

Cryptoleq is a new programming language based on a single instruction computer architecture, which processes homomorphic encryption on data. One instruction set computer (OISC) is a computer architecture which supports only one instruction and is able to perform universal computation. It operates on a sequence of memory cells i.e. organized memory while processor instructions and data reside in unified memory space.

Oleg Mazonka, Nektarios Georgios Tsoutsos, proposed a new computational model Cryptoleq, which expands single instruction computing with native support for homomorphic data using a novel bit layout representation, depicted in Figure 1, shows the cryptoleq abstractions layer which is based on the concept of single instruction architecture.

They compare the raw performance of Cryptoleq’s addition, subtraction and multiplication against HElib FHE software library. A major difference between Cryptoleq and HElib is the use of re-encryption operation. Cryptoleq does not require re-encryption for additions or subtractions, whereas HElib requires. Design and implementation of Cryptoleq supports programs written without privacy protections, and also protect execution using encrypted data under full encryption or heuristic obfuscation modes, depending on the need to multiply encrypted values. A practical framework for Cryptoleq with extended assembly language, compiler, and emulator for executing Cryptoleq programs on different platforms. Universal computation is achieved by introducing a software function, which adds multiplication to the abstract machine’s native addition and subtraction operations. They also developed an enhanced assembly language to facilitate the development of complex programs, in addition to a compiler and an emulator.

Fig 1. Cryptoleq Abstraction Layers

Naser and Bin (2013) surveyed on specific security issues and use of cryptography in cloud computing. Carlos et al.

Revised Version Manuscript Received on March 15, 2017.

Miss. Meenal P. Talekar, M.Tech Student, Department of Computer Science Engineering, G. H. Raisoni Institute of Engineering and Technology, Nagpur (Maharashtra) India. E-mail: meenaltalekar04@gmail.com

Mr. Ravindra Kale, Assistant Professor, Department of Computer Science Engineering G. H. Raisoni Institute of Engineering and Technology, Nagpur (Maharashtra) India. E-mail: ravindra.kale@raisoni.net
(2013 have done survey on recent advances in homomorphic encryption techniques advances in some What Homomorphic Encryption (SWHE) and Fully Homomorphic Encryption (FHE) algorithm.

The cryptographic program obfuscation first implemented by D. Apon, Y. Hung, J Katz, and A.J. Malozemoff (2014). They discuss both challenges encountered and optimizations made over the course of our development, and present a detailed evaluation of the performance of such obfuscators and also show that obfuscation is still far from practical. Without changing the input/output behavior of the program, the process of obfuscation making a program “unintelligible”.

Niyatee Bhatt, Shafika, Payal V. Parmer(2010) introduce a basic concept of the homomorphic encryption and the various encryption algorithm as per the properties of the homomorphic encryption. Chan (2009) works on privacy homomorphism in which we can perform operation on encrypted data and also given two additive homomorphic schemes i.e. Iterated Hill Cipher and Modified RSA. The following table shows the various encryption schemes which perform homomorphic encryption are proposed by different researchers.

Table1: Various Homomorphic Encryption Schemes and their Properties

<table>
<thead>
<tr>
<th>Researcher</th>
<th>Name of Algorithm</th>
<th>Property</th>
<th>Flavor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivest et al.(1978)</td>
<td>RSA</td>
<td>Multiplicative</td>
<td>Partial Homomorphic</td>
</tr>
<tr>
<td>Taher(1985)</td>
<td>ElGamal Cryptosystem</td>
<td>Multiplicative</td>
<td>Partial Homomorphic</td>
</tr>
<tr>
<td>Chan(2009)</td>
<td>Iterative Hill Cipher</td>
<td>Additive</td>
<td>Partial Homomorphic</td>
</tr>
<tr>
<td>Gentry (2009)</td>
<td>Gentry’s Fully</td>
<td>Both additive and fully homomorphic</td>
<td>Homomorphic Multiplicative Encryption</td>
</tr>
</tbody>
</table>

Shahzadi et al.(2012) has done the detailed study of three homomorphic encryption algorithm, i.e. RSA, ElGamal and Paillier. Also they evaluated all three algorithms and shown the comparative study between these algorithm. The result shown that RSA performs better than El Gamal and Paillier and ElGamal Performs better than paillier.

III. RESEARCH PROPOSED

The previous work on Cryptoleq describes that Cryptoleq is a single instruction set abstract machine. In the previous work the Paillier algorithm implemented with Cryptoleq for performing different types of computations. It has been observed that with Paillier algorithm the computation time required for multiplication operation is more as compared to addition and subtraction. And according to my observation RSA performs better than Paillier. And also the computation time for multiplication operation of RSA is much better than Paillier. So I am implemented RSA in a Cryptoleq to improve the performance of multiplication computation. The main purpose of this step is to reduce the execution time of multiplication operation.

To find conclusion, I will compare the computations of Paillier and RSA algorithm with Cryptoleq system and observe the execution time of both algorithm with Cryptoleq system.

IV. CONCLUSION

Cryptoleq system introduce a new computational model based on the concept of single instruction architecture. Universal computation is achieved by introducing a software function, which adds multiplication to the abstract machine’s native addition and subtraction operations. This function is expressed using the only available instruction. We have also developed an enhanced assembly language to facilitate the development of complex programs, in addition to a compiler and an emulator. Cryptoleq allows for several future improvements with regards to performance and security i.e. reduces the execution time and complexity of algorithms.

ACKNOWLEDGEMENT

I would like to express my thanks to the people who have helped me most throughout my research. I am grateful to college principal, HOD, and my guide for their motivation and non stop support.

REFERENCES