
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-6 Issue-4, April 2017

1

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Abstract: Images and scanned text documents are gradually

more used in a vast range of applications. To reduce the needed
storage or to accelerate their move through the computers
networks, the document images have to be compressed.
Traditional compression mechanisms, which are generally
developed with a particular image type and purpose, are facing
many challenges with mixed documents. This paper describes a
statistical block-based technique for an automatic document
image segmentation and compression. Based on the number of
detected colors in each region of the image, this approach creates
a new representation of the image that can produce very
highly-compressed document files that nonetheless retain
excellent image quality. The proposed algorithm segments the
compound document image into blocks of equal size. The blocks
are classified into seven different categories. Each category
represents an image part that shares the same properties. A new
representation of each category is formed and the similar adjacent
blocks are merged to form labeled regions sharing the same
properties. At the end, to achieve better compression ratio, the
different regions of the image are compressed using different
compression techniques.

Index Terms: Adaptive Compression, Block-Based
Segmentation, Image Document Compression, Image
Segmentation, Lookup Dictionary Table (LUD).

I. INTRODUCTION

 Scanned text documents are increasingly used in a wide
range of applications, including but not limited to archiving
systems and document management systems. Many of these
documents, called compound or mixed documents, consist of
a mixture of texts, pictures, graphics (drawing), and
background. The storage requirements of uncompressed high
quality color scanned documents are indeed quite vast. This
can sometimes cause for document transformation and
storage. And unfortunately, managing such uncompressed
documents proves to be inefficient and creates the potential
effect of substantially limiting their benefits and may perhaps
never meet the ever-growing information demands of the
users. As a standard A4 color page document, scanned with a
resolution of 600 dpi, requires around 91 million bytes of
storage space, assuming 24 bit-depth and a standard 8 X 12
inches sheet. Therefore, to reduce the space occupation or to
speed up their transfer through the computers networks, the
document images need to be compressed. Traditional

Revised Version Manuscript Received on February 27, 2017.

Nidhal Kamel Taha El-Omari, WISE University, Faculty of Information
Technology, Amman, Jordan, nidhal.omari@wise.edu.jo

Ahmad H. Al-Omari, Northeren Border University, Faculty of Science,
Computer Science Division, Saudi Arabia,

kefia@yahoo.com (Correspondence Author)
Ali Mohammad H. Al-Ibrahim, WISE University, Faculty of

Information Technology, Amman, Jordan, ali.alibrahim@wise.edu.jo
Tariq Alwada’n, WISE University, Faculty of Information Technology,

Amman, Jordan, tariq.alwadan@wise.edu.jo

compression mechanisms, which are generally developed
with a particular image type and purpose, are facing many
challenges with mixed documents. Unfortunately, these
documents do not compress well using classical image
compression algorithms such as JPEG-2000. This is due to
the presence of sharp edges on top of the smooth surfaces of
the text and graphics, typically found in natural images. What
is more, compression algorithms for text facsimiles, such as
JBIG2, are not suited for color or gray level images.
[1,2,3,4,5,16,18,25]

 Image segmentation plays an important role in
compression of scanned documents, which is to part an image
into different meaningful regions or clusters which have
similar features [2,3,1,19,20,21,22,25]. In this paper, we
tackle the problem of segmenting and compressing mixed
(compound) digital documents. In order to compress it more
effectively, the proposed technique segments the image into
seven different types of components. Every image component
is a homogenous region (or regions) having “common
features” like color gamut and number, shape, pixel intensity,
region formation, text occurrence, grey level, and others [20].
All segmented regions are non-overlapping [25]. In order to
achieve better compression ratios, every component is
compressed separately using the most appropriate
compression technique. This approach differ from previous
ones such as DjVu, Tiff-FX, and MRC, by being extremely
simple and fast, while yielding close to and in many cases
better than the state-of-the-art compression performance
[6,7,9,10,14].
This work is indeed a continuation of the previous works in
the area of document image segmentation and compression
[2,3,16]. To explore further the arguments set out above, this
paper is divided into six sections. While this section provides
an introduction to the main theme of the paper, the rest of the
paper is organized as follows. Section 2 looks at the related
work and algorithms used. Section 3 presents the approaches
developed in this research. In Section 4, the algorithm of this
proposed solution is presented. Then, Section 5 presents the
training results and describes the analysis of the results.
Finally, Section 6 provides the conclusions and offers
avenues for future work.

II. BACKGROUND

Image segmentation of a mixed document aims to separate
background, text, pictures, and graphical components of a
document image [1,2,3]. However, the union of these various
image components generates the original document. There are
different techniques proposed in the literature to solve the
problem of segmenting and compressing compound
documents. These techniques can be classified into three
different categories that Fig. 1 illustrates.

Text-Image Segmentation and Compression
using Adaptive Statistical Block Based Approach

Nidhal Kamel Taha El-Omari, Ahmad H. Al-Omari, Ali Mohammad H. Al-Ibrahim, Tariq Alwada’n

Text-Image Segmentation and Compression using Adaptive Statistical Block Based Approach

2

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

The first category of algorithms transforms the document into
a black and white image. These algorithms are designed to
scan and store documents in black and white colors. Then
these images are decoded using lossless decoders, such as
“Fax Group 3” and “Fax Group 4”. Although they achieve
high compression rate and preserve text legibility, they lead to
the losing of contrast and color information. They may be
suitable for some business and technical documents, but
unsuitable for other document types such as magazines or
historical documents [4,6,7,9,10,5].

The other category uses algorithms that are only designed for
one type of content. Some of them are designed to compress
pure text images which contain only text on pure color
background of the whole image. These algorithms show bad
performance on pure picture images. An example of such an
algorithm is Lempel-Ziv algorithm. Others algorithms are
designed for pure picture images which do not have any text
in the whole image. Alternatively, they have bad performance
on pure text images. An example of them is JPEG.
[11,12,13,14,16,18,23,25]
Since no single algorithm gives good results across all image
types or applications, a third category of algorithms is needed
to compress compound images with different content types:
picture, graphics, and text. Although these algorithms are
proposed to solve the drawbacks of the previous two
categories, they do not reach the ideal situation. The
algorithms of this category are further categorized into two
groups: the Layered encoding and the block-based encoding.
[2,1,23]
The Layered encoding methods separates the images into
different layers and each layer is being encoded
independently from the other layers. Most Layered encoding
methods use the standard three layers Mixed Raster Content
(MRC). As illustrated in Fig. 2, the three layers are: an image
BackGround layer (BG), an image ForeGround layer (FG),
and a binary mask layer. The mask classified the image
components as either ForeGround or BackGround
components. While the ForeGround components are coded by
the ForeGround coder, the BackGround components are
coded by the BackGround coder. Examples of this group of
methods are LuraDocument and DjVu techniques.
[2,6,14,7,9,4,10,15,11,12]

However, the Layered encoding methods still have some
drawbacks. The complexity of layer generation is high, that
makes it unsuitable for many embedded and real time
applications [14,13,12,11]. These techniques tend to classify
the text in the image as the ForeGround and all other details as
the BackGround. Binary representation of the mask layer, that
encodes the text and the graphics contents, tends to distort
some fine document details, such as text edges and thin lines
[9,6,7]. Although ForeGround and BackGround layers may
not be used, they should also be coded; this adds some
inefficiency [12,11,14,6]. Unfortunately, some foreground
components may be classified as belonging to the background
layer [4,9,12,11,14,6]. By contrast, some background
components may be classified as belonging to the
ForeGround layer [4,9,12,11,14,6].
 Moreover, layer based approaches work well on simple
compound images. But when the content is very complex,
they show poor performance. For example, it is difficult to
separate text from backgrounds when the text overlaps with
background or the text has surrounding shadow.
[11,12,15,6,14,7]
 The block-based approaches, which are generally used for
their low complexity, classify the compound image into
blocks of different types. Then each type is compressed
individually with the most off-the-shelf appropriate encoder
technique. Although these methods give better results than the
previous group, there are still some drawbacks. In case of
strong edges in the textual area, they lead to hybrid blocks.
These hybrid blocks contain mixed text and pictures that
cannot be handled effectively. Even if the block contains a
boundary between two regions, all of its pixels are classified
in the same manner and given the same label. Although the
complexity is lower than Layered encoding techniques, both
the classification and compression algorithms of block-based
encoding still have high calculation complexity, which makes
them not suitable for real time applications. [12,11,13,17,23]
Furthermore, the block-based segmentation approaches can
be further divided into two groups: variable-size and
fixed-size blocks [2,23]. This paper indeed use the
equal-size-square blocks.
Accordingly, there is still much room for improving existing
algorithms or coming up with new effective algorithms and
techniques which is described in this research paper.
However, there is a need for an effective way to classify
image components and to compress its content.

III. THE TECHNIQUE DESCRIPTION

The proposed technique divides the scanned image into
equal-size-square blocks and
compresses them in a way that can

Algorithms
designed for
compound

images

Algorithms
designed for
images with

only one type
of content

Block-based
encoding

Algorithms
designed for

pure text
images

Layered
encoding

Algorithms
designed for
pure picture

images

Change the
color of the
document to

black and
white

Segmentation Approaches

Figure 1: Compressing Compound Documents
Approches

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-6 Issue-4, April 2017

3

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Read the scanned input image

I=0

I=I+1

Yes

I=last block?
No

Compressing … (phase 5)

Preliminary Processing (phase 1)

Divide the input image into equal-size-square blocks

Read the ith block

Merging … (phase 4)

Construct the color matrix for the ith block

Data Rearrangement of the ith block (phase 3)

Define the type of the ith block (phase 2)

 End
th

 Start

restore the blocks again such that each and every piece of data
that was initially in the blocks stays after the document is
decompressed. It works in a sequence of five phases:
preprocessing phase, image segmentation and classification
phase, rearrangement phase, merging phase, and compression
phase. These phases are illustrated through the flowchart of
Fig. 3 which they form the backbone framework for the
proposed technique. Since each and every bit is returned back
to its original form after the document is decompression, this
proposed algorithm is a lossless compression technique
[2,23,25]. Therefore, this algorithm is suitable to be used
where losing data or monetary information could represent an
issue [25].

A. Phase I: Data Perpetration

The original data set is subjected to a number of preliminary
processing steps in order to make it operates accurately and
usable by the next phase. Therefore, this stage determines the
success of this technique. This includes data collection and
partitioning, pre-processing, post-processing (i.e.
De-normalization), and all the primarily operations that are
used for reducing noise or variations inside the scanned
image.

B. Phase II: Assigning Labels

The image is divided into equal-size-square blocks. A matrix
of an RGB color map of each block is generated. This matrix
represents the colors and their frequencies. However, colors

with low frequency may be considered as noise. As a
consequence these low frequency colors will be eliminated.
Each block is assigned a label or a type. This assignation is
based on the analysis of the distribution and number of colors;
such that pixels with the same label share certain
characteristics [18,19,20]. Typically, all blocks that make up
of the same number of colors are given the same label or type.
Based on this, there are seven types:

1 . Type “A” represents the blocks that contain only one
color, considered as background. These blocks
represent, in general, the background of a document
image which is a large expanse of a single color.

2 . Type “B” represents the blocks that contain two
colors. The blocks of this category usually represent
the text regions.

3 . Type “C” represents the blocks that contain three or
four colors.

4 . Type “D” represents the blocks that contain from 5 to
16 colors.
Practically, the last two categories “C” and “D”
represent mainly the drawing parts of the documents
where we find generally the graphs, charts, and curves.

5 . Type “E” represents the grey blocks that contain from
17 to 256 grey colors. These blocks are mainly the
grey part of the image.

6 . Type “F” represents the blocks containing from 17 to
256 RGB colors. The blocks of this type usually
represent the picture regions.

7 . Type “X” represents all the other cases where each
block contains more than 256 colors. These blocks
represent in general the millions of colors pictures
found in the images.

For the scanned image, N, let the numbers of blocks for the
types “A” , “B”, “C”, “D”, “E”, “F”, and “X” are: N A , NB ,
NC , ND , NE , NF , and NX , respectively. Then, the total
number of blocks is defined as:

N = NA + NB + NC + ND + NE + NF + NX (1)

C. Phase III: Tables Forming

The eventual goal of this phase is to get a new representation
of each block. The new generated data of each block is based
on the content of each block. The output of this phase is a
table where each row represents a single block of the original
input image. The content of this table depends on each block
type. To explore further details, this phase is described in the
following subsections (1. through 3.) below:

1. Types “C”, “D”, “E” and “F”
This phase for these types depends on storing the detected
colors within each block inside a special dictionary
constructed specifically at the level of that block. Then, rather
than storing the colors, the reference pointer indexes are used.
Each reference pointer points out to a specific color inside this
dictionary. These reference pointers are typically
implemented by means of a Lookup Dictionary Table (LUD).
Each pointer is used as an indication of where to decompress
the original block. The numbers of needed bits for each
pointer are 1,2,4,8 for the types “B”, “C”, “D”, and “F”,
respectively.
At the decoder side and through the decompression process,
when the computer read the compressed file and encounters a
pointer, it interprets that pointer by retrieving the
corresponding color from its place in

Figure 3: Proposed Technique Flowchart

Text-Image Segmentation and Compression using Adaptive Statistical Block Based Approach

4

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

the dictionary index of that block. So the original image is
retrieved up to the last bit.
Since type “B” has two color layers, the dictionary contains
six cells one cell for every basic color component of the RGB
color model. Fig. 4 shows the representation of the data
structure of type “B”. The blocks in Fig. 4 are represented by
the address (I, J) for each block, the 2-color dictionary, called
BackGround (BG) and ForeGround (FG) colors, and only one
bit for each individual pixel to indicate whether it is assigned
to either the BackGround or the ForeGround colors. This
individual bit is set to either zero if it belongs to the
BackGround color or one if it belongs to the ForeGround
color.

The three types, “C”, “D”, and “F”, are similar to type “B”.
Fig. 5 illustrates the representation of data in these types. The
following points should be noted:

• Since every color has three RGB components, the
dictionary of type “C” has 4 * 3 = 12 cells (bytes). In
view of that, each block is represented by the pair (I, J)
where I and J represent the column and row numbers
respectively; as well as the 4-color dictionary, and
two-bit reference pointer for each individual pixel to
designate a specific color from the four colors of the
dictionary. The value (00)2 points out to the first row in
the color map, the value (01)2 points out to the second
row, the value (10)2 points out to the third row and the
value (11)2, which is (3)10, points out to the last row. In
case of there are only three colors, the fourth color is
assumed to be null.

• As discussed beforehand, the dictionary of type “D”
blocks has 16 * 3 = 48 cells. Once more, each block is
represented by the pair (I, J), the 16-color dictionary,
and four-bit reference pointer for each individual pixel
to designate a specific color from the sixteen colors of
the dictionary. The value (0000)2 points out to the first
color in the dictionary, the value (0001)2 points out to
the second color and so on up to the value (1111)2,
which points out to the last color. In the special
dictionary, if there are colors less than 16 and more
than 4, they are fulfilled to 16 colors using null values.

• The dictionary of type “F” blocks has 256 x 3 = 768
cells (bytes). Like other types, if there are colors less
than 256 and more than 17, they are completed to 256
colors using null values. Each block is represented by
the pair (I, J), the 256-color dictionary, and eight-bit
reference pointer for each individual pixel to designate

a specific color from the 256 colors of the dictionary.
Thus, the value (00000000)2 points out to the first
color, the value (00000001)2 points out to the second
color and so on up to the value (11111111)2, which
points out to the last color.

2. Type “A”
Since type “A” blocks have only one color, the dictionary
contains only three cells, one for every basic color component
of the single RGB color. Rather than saving the same
information for every individual pixel that makes up the
BackGround, this approach stores the color data for the
BackGround color only once to refer to all pixels of that
block. Fig. 6 illustrates how the data is constructed in this
type.
For this type, each block is represented by its address (I, J),
and the three RGB components of its unique color. As the
image is equal-size-square blocks, the size information,
“blocklength”, is only stored once at the first location of the
compressed file of this type.

3. Types “E” and “X”
A block is obviously identified as grey if the values of the
three basic RGB components in all pixels of the block are
almost equal. Rather than repeating the same information for
the three repeated RGB color components, one component is
enough to represent the other two components. The red
component is therefore used to represent the other two
components.
Accordingly, neither the special dictionary, nor the reference
pointers (LUD) are needed for type “E” blocks. Rather, the
actual red component of the original block is selected and
directly stored as it is without any reshaping or
rearrangement. Fig. 7 illustrates how the data is constructed in
this type of blocks. Each block is represented by its address
(I, J) and the actual red component of its pixels, where each
individual pixel requires a single byte.

Figure 4: Data Structure for Type “B”

Figure 5: Data Structure for Types “C”, “D”, and
“F”

Pixels'
Data

Block
Address

I value

J value

Red component of 1st color

Green component of 1st color

Blue component of the 1st color

Red component of the 2nd color

Blue component of the last color

Pixel Representation
Using Pointers) LUD)

Dictionary

BG

FG

Block
Address I value

J value

Red component of the 1st color

Green component of the 1st color

Blue component of the 1st color

Red component of the 2nd color

Green component of the 2nd color

Blue component of the 2nd color

Pixels' Data

Dictionary

Pixels 1-8

Pixels 9-16

Pixels' representation of the remaining
pixels (one bit per pixel)

The Block length, “Blocklength”

Red component of the 1st color

Green component of the 1st color

Blue component of the 1st color

Block
Address

Dictionary
(FG)

J value
 I value

Figure 6: Data Structure for Type “A”

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-6 Issue-4, April 2017

5

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Type “X” is like type “E” but all the three basic RGB
components of the original block are stored while the red
component is only stored in type “E”. The representation of
these blocks is saved by storing the address (I, J) of the block
and the actual pixels' data, where each individual pixel
requires three bytes. Fig. 8 shows the representation of this
type of blocks.

D. Blocks Merging

The merging phase aims to put together the adjacent
equal-type blocks that have the same dictionary of colors into
a larger arrangement of blocks to form higher-level regions.
However, the blocks belonging to the same type don’t
necessary have the same colors, but they may have the same
number of colors. As in Fig. 9, block neighborhoods can be
defined in terms of one of the followings:

• 4-connectivity: in which the two blocks share a common
side.

• 8-connectivity: in which the two blocks share either a
common side or a common corner.

E. Compression

This is last phase in which every region (blocks of similar
features) is compressed separately using the most
off-the-shelf appropriate compression technique.

IV. THE ALGORITHMS

This proposed technique consists of two algorithms: Image

Color Statistic and Color Counts Block-Based Segmentation.

A. The First Algorithm

Algorithm 1 is designed to generate a Color Statistic Table
(CST) for the colors and their frequencies to either the
whole image or one of its blocks. If the pixels of an input
block (I, J) of “blocklength x blocklength” in size and its
pixels are distributed among “n” 3-component colors, then
Table 1 represents the output of this algorithm:

Table 1: Output of Algorithm 1

Red Green Blue Frequency

R001 G001 B001 F001
R002 G002 B002 F002

::::: ::::: ::::: :::::

Ri-1 Gi-1 Bi-1 Fi-1

Ri Gi Bi Fi

::::: ::::: ::::: :::::

Rn-1 Gn-1 Bn-1 Fn-1

Rn Gn Bn Fn

Total Blocklength2

This table is arranged in descending order according to the
last column, “Frequency”, from “F001” to “Fn”. At the
beginning of this algorithm, an empty 4-column table is
created. As the image file is read, this table is altered
whenever a new color is encountered. If the encountered color
is already in the table, its corresponding frequency is
increased by one. Otherwise, a new row corresponding to this
color is created with a frequency equals to one.

Algorithm 1: Image Color Statistic.

Description: This algorithm is designed to build a statistic
about the detected colors and their frequencies that
are found within every block. This statistic represents
the color map or the dictionary of colors.

Input: Either an MxNx3-size BMP image or one of its
blocks.

Output: a colour statistic table (CST) of four columns;
three of them correspond to the three basic RGB
components of each colour and the last one
corresponds to the frequency of that colour. Every
detected colour has one row.

Method:
1) Initialization: construct an empty table “CST” of 4

columns.
2) Read the input image pixels from left to right and top

to bottom.
3) Repeat for each individual pixel of the input file:

If the three basic RGB components are in
“CST” Then
Add 1 to the frequency that corresponds to that
color.
Else
Insert this color in the table “CST” with a
frequency equals to one.
End If

B. The Second Algorithm

Algorithm 2 represents the main steps of the technique
discussed in this paper.

Block
Address I value

J value

Pixels' Data
Using

pointers

Red component of the 1st pixel

Red component of the 2nd pixel color

Pixels' representation of the
remaining pixels (1 byte per pixel)

Figure 8: Data Structure for Type “X”

I value

J value

Red component of the 1st pixel

Green component of 1st pixel
pixel

Blue component of the 1st pixel

Red component of the 2nd pixel

Green component of the last pixel

Blue component of the last pixel

Block

Pixels' data
Using

pointers

Figure 7: Data Structure for Type “E”

Figure 9: 4-Connected & 8-Connected neighbor Blocks

4-connected
neighbors

8-connected
neighbors

Text-Image Segmentation and Compression using Adaptive Statistical Block Based Approach

6

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Algorithm 2: Color Counts Block-Based Segmentation.

Description: Through this algorithm, the bitmap table of
the original image is divided into seven types
according to the number of colors that are used
inside.

Input: Any BMP image of size MxNx3 that represents a
scanned document.

Output: Compressed Image File.
Method:

1. Initialization: create seven empty tables correspond
to the seven types. Each table is of unsigned integer
type with 8-bit (uint8) length.

2. Preliminary processing for reducing noise or
variations inside the scanned image.

3. Divide the image into equal-size-square blocks.
4. For each block:

a) Using Algorithm 1, construct the color statistic
table “CST”.

b) Check the colors frequencies of the previous
table, “CST” . Practically, colors with low
frequency may be considered as noises and then
eliminated.

c) Determine the type of the block as:

otherwise. :

colors. RGB 256-17 containsblock theif :

colors.grey 256-17 containsblock theif :

colors. 16-5 containsblock theif :

colors.four or threecontainsblock theif :

. colors twocontainsblock theif :

color. one containsblock theif :

X

F

E

D

C

B

A

If the block type is “A” Then
 Create a new row in the table “A” for this block.

This row contains:
• The block length, “Blocklength” .
• The address of the block: “ I” and “J” .
• The values of the three RGB components of

the single detected color of the block.
Else If the block type is “B” Then

Create a new row in the table “B” . This row
contains:

• The address of the block: “ I” and “J” .
• A special dictionary for the two detected

colors.
• 1-bit-reference-pointer index to designate

one of the two colors of the dictionary; using
zero for the pixels having the first color and
one for the second color. As a result, one
byte can hold the information of 8 pixels.

Else If the block type is “C” Then
Create a new row in the table “C” for this block.

This row contains:
• The address of the block: “ I” and “J” .
• A special dictionary for the four detected

colors. In the case of three colors, the fourth
color is assumed to be null.

• 2-bit-reference-pointer index to designate a
specific color from the four colors of the
stored dictionary. One LUD value from the
binary list {00, 01, 10, 11} is used for each
pixel to point out to its color. One byte can

therefore hold the information of 4 pixels.
 Else If the block type is “D” Then

Create a new row in the table “D” for this block.
This row contains:

• The address of the block: “ I” and “J” .
• A special dictionary for the 16 detected colors.

If there are colors less than 16 and more than
4, they are fulfilled to 16 colors using null
values.

• 4-bit-reference-pointer index to designate a
specific color from the sixteen colors of the
stored dictionary. Every 2 pixels require one
byte.

Else If the block type is “E” Then
Create a new row in the table “E” for this block.

This row contains:
• The address of the block: “ I” and “J” .

• For each pixel of the block, store only its
red color component. Each pixel, in turn,
requires a single byte.

Else If the block type is “F” Then
 Create a new row in the table “F” for this block.

This row contains:
• The address of the block: “ I” and “J” .
• A special dictionary for the 256 detected colors.

If there are colors less than 256 and more
than 17, they are fulfilled to 256 colors using
null values.

• 8-bit-reference-pointer index to designate a
specific color from the 256 colors of the
stored dictionary. Obviously, each individual
pixel requires a single byte.

Else If the block type is “X” Then
Create a new row in the table “X” . This row

contains:
• The address of the block: “ I” and “J” .
• The pixels' data that are detected in that block.

Each individual pixel requires three bytes.
End If

5. Do Merging.
6. Do compression.
7. Combine all the seven tables into one table.

V. EXPERIMENTAL RESULTS AND ANALYSIS

Since a reliable system should be experimented on a large
number of samples, a special database that includes different
images was created [24,2]. As illustrated in Table 2, this
database contains 1821 24-bit-RGB-bitmap images of
different resolutions distributed among five classes. Using
MATLAB® version 9.0 release R2016a environments, the
proposed technique has been implemented on this source
database.

Table 2: Classes of the Special Database.

Image Class No. of images

Pure Background 142
Pure Text 320
Pure Graph 350
Pure Picture 370
Mixed Image 639

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-6 Issue-4, April 2017

7

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Total number of images 1821

The Saving Ratio Percentage (SRP) is used as a measure to
evaluate the performances of the proposed technique. It is
defined as follows:

(2) 100%
size image original

size image compressed
1SRP ×

−=

This measure depends on the image content that leads to the
distribution of the original table on the seven types. Since the
compression ratios are dependent on the type of each block
which can in turn affected the SRP, the best case is obviously
seen whenever all the blocks are of type “A”, which means
that the entire image is a BackGround of one color. The next
best case is whenever all the blocks are of type “B”, and so on.
However, the worst case is whenever all the blocks are of type
“X”, which means that the entire image is a picture. In this
case, the encoding of this approach is not appropriate and the
system will be flexible to cancel the encoding process and use
another proper encoder.
In case of blocks of type “A”, there is a need to store an
additional one-byte cell to represent the block length,
“blocklength”. Moreover, since the blocks of type “A” have
single color, which is classified as background, there is no
need to store more data about pixels contained in the block.
Hence, neither the special dictionary, nor the reference
pointers (LUD) are needed, only six bytes are required to
store the whole block no matter how much its size. However,
this solves one of the drawbacks of Layered encoding
mentioned at Section 2. The SRP per block of this type is
given by the equation:

(3) 100% *
hblocklengt * 3

 3 2 1
1 SRP(A)

2

 ++−=

100% *
hblocklengt

2
1

2

−=

Where:
1 . Number “1” of the numerator means that one byte is

required to store the “blocklength”.
2 . Number “2” of the numerator means that two bytes

are required to store the address of each block, one
byte for the Ith address and one byte for the Jth
address.

3 . Number “3”, in the numerator and the denominator,
means that there are three basic RGB color
components.

4 . “blocklength” stands for the block length and is given
in pixels. Since the image is divided into equal-size-
square blocks, the size of each block is
“blocklength2”. Thus, the denominator stands for the
size of the original block before compression.

For the blocks of types “B”, “C”, “D”, and “F”, the
compression is done by storing pointers for the special
dictionary. However, the SRP per block is given by the
equation:

(4) 100% *
hblocklengt * 3

 b/8

hblocklengt
2 *3 2

1 F) |D |C |SRP(B
2

2
b

++

−=

Where:

1 . “2b” stands for the number of bits required to store
the reference pointers (LUD); “b” is 1,2,4,8 for the
types “B”, “ C”, “ D”, “ F”, respectively.

2 . The number of pixels that can be stored in a single
byte is (8 / b), which gives 8,4,2,1 for the types “B”,
“C”, “ D”, “ F”, respectively. So the expression
(blocklength2/ (8/b)) is used to determine the number
of bytes that are required to store the data of each
block.

3 . The rest of this equation is like equation 3.
In type “E”, the SRP per block is given by the equation:

(5) 100% *
hblocklengt * 3

hblocklengt 2
1SRP(E)

2

2

 +−=

The major difference between the last two equations, 4 and 5,
is that the dictionary is not needed in equations 5 and
therefore is cancelled.
For the blocks of type “X”, the SRP per block is given by the
equation:

(6) 100% *
hblocklengt * 3

hblocklengt * 3 2
1 X) (SRP

2

2

 +−=

Consequently, a summary of all types is provided in Table 3.
Table 4 illustrates these remarks and results for different
block types and lengths, “blocklength”. However, the
strikethrough bolded cells are introduced in this table, Table
4, to show the cases where the compression ratio is
inappropriate due to the fact that:

If the block is of type “X” , the actual data is saved, as it is,
in conjunction with the block address, (I, J).

Table 3: Comparison of the seven types

Type
Block
Length

Block
Address

Dictionary
Size

LUD

“A” � � 1*3=3 �
“B” � � 2*3= 6 �
“C” � � 4*3=12 �
“D” � � 16*3=48 �
“E” � � Null=0 �
“F” � � 256*3=768 �
“X” � � Null=0 �

Fig. 10 shows the possible ranges (minimum and maximum)
of SRP for these seven types. Fig. 11 shows the evolution of
the SRP in function of the block length. However, the SRP is
improved while the size of the block is increased.
By analyzing these results, we found that the block length,
“blocklength”, affects moderately the SRP. When the block
length is increased, SRP increases, too. Moreover, in case of
type “X” blocks, this technique gives negative results. As a
result, this technique should be dynamic enough, so that when
the decomposition using this technique is not appropriate for a
particular image, the system should be flexible enough to
cancel the operation and use another compressor.

As a final point, if the logical operation “XOR” is applied
between the encoded input image and the decoded output
image, the result is zero. Therefore, the output quality of this
phase is 100% which, in turn, leads to the conclusion that this
technique is a lossless one [2,23,25].

Text-Image Segmentation and Compression using Adaptive Statistical Block Based Approach

8

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Table 4: Saving Rates Percentage per Block for the
different types of blocks

Block
length

Type
“A”

Type
“B”

Type
“C”

Type
“D”

Type
“E”

Type
“F”

Type
“X”

020 99.50 95.17 90.50 79.17 66.50 02.50 -0.17

030 99.78 95.54 91.15 81.48 66.59 38.15 -0.07

040 99.88 95.67 91.38 82.29 66.63 50.63 -0.04

050 99.92 95.73 91.48 82.67 66.64 56.40 -0.03

060 99.94 95.76 91.54 82.87 66.65 59.54 -0.02

070 99.96 95.78 91.57 82.99 66.65 61.43 -0.01

080 99.97 95.79 91.59 83.07 66.66 62.66 -0.01

090 99.98 95.80 91.61 83.13 66.66 63.50 -0.01

100 99.98 95.81 91.62 83.17 66.66 64.10 -0.01

110 99.98 95.81 91.63 83.20 66.66 64.55 -0.01

120 99.99 95.81 91.63 83.22 66.66 64.88 0.00

130 99.99 95.82 91.64 83.23 66.66 65.15 0.00

140 99.99 95.82 91.64 83.25 66.66 65.36 0.00

150 99.99 95.82 91.65 83.26 66.66 65.53 0.00

160 99.99 95.82 91.65 83.27 66.66 65.66 0.00

170 99.99 95.82 91.65 83.28 66.66 65.78 0.00

180 99.99 95.83 91.65 83.28 66.66 65.87 0.00

190 99.99 95.83 91.65 83.29 66.66 65.96 0.00

200 99.99 95.83 91.66 83.29 66.67 66.03 0.00

210 99.99 95.83 91.66 83.30 66.67 66.08 0.00

220 99.99 95.83 91.66 83.30 66.67 66.14 0.00

230 99.99 95.83 91.66 83.30 66.67 66.18 0.00

Figure 10: Possible SRP ranges per block type

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a five-phase image
segmentation and compression scheme based on the number
of colors detected in each region of the image. This proposed
technique benefit from the use of information regarding the
number of detected colors in each region of the scanned image
to be segmented. It aims to segment the original image into
consistent and homogeneous non-overlapping regions and
then, each region is compressed by using the most
off-the-shelf appropriate compression technique. This
approach combines different compression concepts in order
to achieve better compression of the scanned documents. To
test the performance of the proposed algorithm, a special
database was created and for security motivation, an integrate
encryption can be applied at the encoder side and decryption
at the decoder side; this help in creating secure data storage
for the scanned document.

ACKNOWLEDGMENT

This work is encouraged by the World Islamic Science and
Education University (WISE), Amman Jordan, and the
Northern Border University Arar, Kingdom of Saudi Arabia..

REFERENCES
1. Acharyya, M. and Kundu, M.K. (2002). “Document Image

Segmentation Using Wavelet Scale-Space Features”, IEEE
Transactions Circuits Syst. Video Technol., Volume 12, Issue 12, pp.
1117–1127.

2. Nidhal Kamel Taha El Omari. (2008). “A Hybrid Approach for
Segmentation and Compression of Compound Images”, PhD
Dissertation, the Arab Academy for Banking and Financial Sciences.

3. Nidhal Kamel Taha El-Omari and Arafat A. Awajan. (December
20-22, 2009). “Document Image Segmentation and Compression
Using Artificial Neural Network Based Technique”, International
Conference on Information and Communication Systems (ICICS09),
pp. 320-324, Amman, Jordan.

4. Kai Uwe Barthel et al., (January 2000). “New Technology for Raster
Document Image Compression”, SPIE. The International Society for
Optical Engineering, Volume 3967, pp. 286-290, San Jose, CA.

5. Patrice Y. Simard et al., (March 23-25, 2004). “A
Foreground/Background Separation Algorithm for Image
Compression”, IEEE Data Compression Conference (DCC), pp.
498–507, Snowbird, UT, USA.

6. Ricardo L. de Queiroz et al., (February 1999). “Mixed Raster Content
(MRC) Model for Compound Image Compression”, SPIE the
International Society for Optical Engineering, Volume 3653, pp.
1106-1117.

7. Ricardo L. de Queiroz. (October 8-11, 2006). “Pre-Processing for
MRC Layers of Scanned Images”, Proceedings of the International
Conference on Image Processing (ICIP), Atlanta, Georgia, USA, pp.
3093–3096.

8. Lihong Zheng and Xiangjian He. (2004). “Edge Detection Based on
Modified BP Algorithm of ANN”,
Conferences in Research and Practice in

Figure 11: Evolution of the SRP in function of the block length

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-6 Issue-4, April 2017

9

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Information Technology (RPIT), Volume 36, pp. 119–122.
9. Guotong Feng and Charles A. Bouman. (October 2006). “High Quality

MRC Document Coding”, IEEE Transactions Image Processing,
Volume 15, Issue 10, pp. 3152-3169.

10. Leon Bottou, Patrick Haffner et al., (July 1998). “High Quality
Document Image Compression with DjVu”, Journal of Electronic
Imaging, Volume 07, Issue 3, pp. 410-425.

11. Wenpeng Ding et al., (January 30, 2007). “Rate-Distortion Optimized
Color Quantization for Compound Image Compression”, Visual
Communications and Image Processing Conference, SPIE
Proceedings, Volume 6508, pp. 65082Q1-65082Q9, San Jose, CA,
USA.

12. Tony Lin and Pengwei Hao. (August 2005). “Compound Image
Compression for Real Time Computer Screen Image Transmission”,
IEEE Transactions on Image Processing, Volume 14, Issue 8, pp.
993-1005.

13. Wenpeng Ding et al., (2006). “Block-based Fast Compression for
Compound Images”, ICME, paper ID 1722, pp. 809–812.

14. Debargha Mukherjee et al., (June 2002). “JPEG2000-Matched MRC
Compression of Compound Documents”, IEEE International
Conference on Image Processing (ICIP), Volume 3, pp. 225-228.

15. Cheng H. and Bouman C. A. (April 2001). “Document Compression
Using Rate-Distortion Optimized Segmentation”, Journal of Electronic
Imaging, Volume 10, Issue 2, pp. 460–474.

16. Nidhal Kamel Taha El-Omari et al., (2012). “Innoviate Text-Image
Compression Technique”, European Journal of Scientific Research, ©
EuroJournals Publishing Inc., Volume 88, Issue 4, pp. 603-616.

17. Gnana King, G.R.1 and Seldev Christopher, C.2. (2014). “Improved
block based segmentation algorithm for compression of compound
images”, Journal of Intelligent & Fuzzy Systems, Volume 27, Issue 6,
pp. 3213-3225.

18. Qindong Sun et al., (2015). “A Method of Image Segmentation based
on the JPEG File Stream”, Journal of Computational Methods in
Sciences & Engineering, Volume 15, Issue 3, pp. 467-475.

19. Bo Chen et al., (June 2015). “A new image segmentation model with
local statistical characters based on variance minimization”, Applied
Mathematical Modelling, Volume 39, Issue 12, pp. 3227-3235.

20. Gagan Jindal and Sikander Singh Cheema, (2016), “Review Paper of
Segmentation of Natural Images using HSL Color Space Based on K-
Mean Clustering”, International Journal of Innovations &
Advancement in Computer Science, Volume 5, Issue 7, pp. 26-29.

21. Zhanjiang Zhi et al., (2016), “Two-Stage Image Segmentation Scheme
Based on Inexact Alternating Direction Method”, Numer. Math. Theor.
Meth. Appl., Volume 9, Issue 3, pp. 451-469.

22. Haifeng Sima et al., (2016), “Objectness Supervised Merging
Algorithm for Color Image Segmentation”, Mathematical Problems in
Engineering, Volume 2016, Article ID 3180357, pp. 1-11.

23. S.Thayammal, and D.Selvathi., (2013), “A Review On Segmentation
Based Image Compression Techniques”, Journal of Engineering
Science and Technology Review, Volume 6, Issue 3, pp. 134-140.

24. Ian Sommerville, (2015), “Software Engineering”, 10th Edition,
Pearson Education, Inc., ISBN-13: 978-0133943030, New York, USA.

25. Er. Kuldeep Kaur et al., (2016), “Comparative Analysis of
Compression Techniques: A Survey”, International Research Journal
of Engineering and Technology (IRJET), Volume 03, Issue: 04, pp.
1042-1046.

Nidhal Kamel Taha El-Omari He
obtained B.Sc. 2005. In 2008, he obtained
his Ph.D. in Computer Information
Systems in Image Processing from Arab
Academy for Banking and Financial
Science (AABFS), Amman-Jordan.
He joined the Information Technology
Directorate of the Jordanian Ministry of
Defense in 1986 and retired in 2009.
During 1986-1989, he worked as software

developer. During 1989-1995, he was systems analyst and systems
engineer. During 1995-2004, he was the chief of IT instructors, head of
many sections, and the project manager of many computer projects. During
2004-2009, he chaired a number of IT-related departments including:
System Follow up Department, Technical Support Department, and
Automation Department. During 2009-2011, he was the director of the
Computer Center and the Chair of the Department of Computer Science
and Basic Science at Faculty of IT at WISE University in Jordan. During
2009-2014, he was an assistant Professor.
 Since 2015, he is an Associate Professor and the head of Department of
Software Engineering at the Faculty of IT, WISE University. His research

interests include: Image Compression & Segmentation, Artificial Neural
Network (ANN), Artificial Bees Colony System (ABC), Wireless
Networks, and Programming Languages and Methodologies for building
correct, secure and efficient software. Dr. El-Omari authored/co-authored
two computer books and more than twenty five research papers in
international journals and conferences. nidhal.omari@wise.edu.jo;
omari_nidhal@yahoo.com;

Ahmad H. Al-Omari , received the B. Sc. In
Computer Science in 1985, M of Computer
Science in 2001, and he received his Ph.D. in
in Computer Information Systems in 2004, he
had long working experience in the field of
information technology in many working
areas like, systems analysis, programming,
tendering, network design, management and
trainer. After he joined the academic area, he
was the acting dean, dean, department head in
the faculty of Information Technology FIT,

Applied Science University. He supervised many master students, he
participated in master examination and discussion committees, and he also
published more than 13 research work in his field.

Al-Ibrahim was born in Jordan on june

1th, 1966. He obtained the B.Sc. in Computer
Science in 1988 from Yarmouk University,
Irbid, Jordan. In 2008, he obtained his Ph.D.
in Computer Information Systems in Image
Processing from Arab Academy for Banking
and Financial Science (AABFS), Amman,
Jordan. He joined the Information
Technology Directorate of the Arab Potash
Company in 1991 and retired in 2009. During
1991-1996, he worked as software developer.

During 1996-1999, he was systems analyst and systems engineer. During
1999-2005, he was the chief of IT Development and Technical Support unit
(head of many sections, and the project manager of many computer
projects). During 2006-2010, he was Human Resources Manager (HR
Manager). During 2014-2015 he was Chair of the Department of Computer
Science and Basic Science at Faculty of IT at WISE University in Jordan.
Since 2010, he is an Assistant Professor at the Faculty of IT in Jadara
University then from 2011-2016 Assistant Professor Then 2016 – Associate
Professor in WISE University. His research interests include: Image
compression & segmentation ,Artificial Intelligence (AI), Database(DB),e-
Government , Information Storage and Retrieval (IR), Artificial Neural
Networks-Based Decision Support System ,Strategic Information System,
and programming languages and methodologies for building correct, secure
and efficient software. Dr. Al-Ibrahim authored to computer books
(1-Discrete Mathematics for IT Students and 2-Introduction of programming
languages / Theory of Computation) and more than fifteen research papers in
international journals and conferences. ali.alibrahim@wise.edu.jo;
ali.alibrahim66@yahoo.com;.

