Energy Ventilation Air Flow Electronic Meter

Gailan Abdul Qadir, Hassan Ali Salman, Sabah Shehd Abdulabas

Abstract: The measurement of ventilation losses is one of several types in the energy balance of building, depends on nonlinear single slope type analog to digital converter (NL-ADC), in this paper a digital electronics method is described which is useful in measuring the ear flow via leakage per meter of length of windows and doors. The pressure difference signal is provided as an electrical voltage through appropriate transducer, the digital instrument receives the voltage and processes it together with input coming data of the living area geometry, the resulting readout is digital output number representing of the air flow in the building, the energy ventilation meter will be tested in two different room to measure energy conservation in building related to ventilation losses measurement.

Keywords: (NL-ADC), measurement, papera digital electronics, measurement. Appropriate transducer

I. INTRODUCTION

In the field of energy conservation in building, the measurement of ventilation losses is one of the several types in the energy balance of building, the other type are such thermal losses of walls and the thermal losses of windows. The method depends on on nonlinear single slope type analog to digital converter (NL-ADC), instead of one integer, the signal slop ADC employ three analog integrators. These integrators together with combination of a voltage – to frequency convertor (VFC) provide a digital count that represents the air flow in the building.

The design employs up to data electronic hard ware from the analog-switches, integrators, comparators... etc. to the digital counting, gating and control logic circuitries. These type of circuits provides flexibility of practical design assessing the energy demands of building and is quite useful for the mechanical engineers associated with demand and conservation of energy of buildings.

II. THEORY OF OPERATION

The electronic system is required to find the crack’s air- flow using digital technique, the equation of crack’s air- flow is:

\[\text{crack’s air flow} = \alpha (\Delta P)^{2/3} \]

Where \(\alpha \) is the living area geometry.

\(\Delta P \) is The pressure difference signal.

The pressure difference signal \(\Delta P \) is provided as an electrical voltage \(V_1 \) by means of appropriate transducer. This signal is applied simultaneously to VFC circuit and three cascaded integrators \(I_1, I_2, \) and \(I_3 \).

At \(t = t_0 \) a reset pulse \(R \) as in figure (1) is applied to these integrator and the counter.

The cascaded integrators arrangement will provide the following output voltages \(V_1, V_2, \) and \(V_3 \) as in figure (2):

\[V_1 = -\frac{1}{RC} \int_{0}^{t} -V_0 dt \]

\[V_1 = -\frac{V_0}{RC} t \]

\[V_2 = -\frac{1}{RC} \int_{0}^{t} -V_1 dt \]

\[V_2 = -\frac{V_0}{2(RC)^2} t^2 \]

\[V_3 = -\frac{1}{RC} \int_{0}^{t} -V_2 dt \]

\[V_3 = -\frac{V_0}{6(RC)^3} t^3 \]

Figure 1: Reset Pulse.

Figure 2: the output of cascaded integrators and reference voltage.
The output of third integrator V_3 is compared to V_{ref} to control the pulses of the VFC as in figure 3 to pass through gate (AND) to clock the main counter.

Hence,

$$N = \frac{3}{\sqrt{6}} RC \left(k_f V_1 \right)^{3} \sqrt[3]{\frac{V_{ref}}{V_0}}$$

Or

$$N = \frac{3}{\sqrt{6}} RC \left(V_{ref} \right)^{2/3} \sqrt{\frac{V_0}{V_1}}$$

Comparing eq (7) with general form equation (eq.1) of the system one can see that:

$$a = \frac{3}{\sqrt{6}} k_f RC \left(V_{ref} \right)^{2/3}$$

And $\Delta P = V_0$

Hence the digital output number N is proportional to the crack air fallow required.

III. CIRCUIT DESCRIPTION AND RESULTS

The electronic circuit utilizes both analog and digital circuit sections employ three precision integrators, analog switches and comparator circuit (4151) and three BCD counters, circuit diagram shown in figure (4). Figure (5) shows the calibration curve of the output digital number (N) against the applied voltage (V_0) where the collected data is drawn with matlab program. The accuracy of measurement shows a difference of around 2% between the actual and measurement calibration curves.

This is due to the offset errors of op-amps and VFC conversion nonlinearity together with analog switches S_1, S_2 and S_3 on resistances.

![Figure (4) digital air flow velocity meter circuit diagram](image-url)
IV. CONCLUSION

This paper described a digital meter useful in the measurement of air flow via leakage per meter of length of windows and doors. The error quoted is of the order of 2%. The meter has been tested in two rooms and the results of measuring shows small percentage of error between actual and measured calculation of energy saving per temperature. The device is quit useful tool in the assessment of energy conservation in building related to ventilation losses measurement.

REFERENCE