Design and Analysis of Polymer PEK Spur Gear under Static Loading Condition using FEA

Devikant Baviskar, Balbheem Kamanna, Gauri Tembe, Kajal Juikar

Abstract—this work presents the design and Analysis of polymer PEK spur gear and Comparison of results of PEK with Metallic Cast Iron under limited loading conditions. Application of Plastic gear reduces the weight and noise vibration. Analytical Method is used to calculate Tooth load with help of Lewis equation & dynamic tooth load with help of Buckingham equation. Gear profile modeling is done by using SOLIDWORKS 2015. Finite Element Method is used for Static analysis of the gear to find the Von-misses stress on the tooth of the gear using ANSYS and these values are compared with Analytical values.

Index Terms—SOLIDWORKS, ANSYS, Lewis and Buckingham Equation, PEK.

I. INTRODUCTION
Due to High strength to weight ratio and Low noise vibration, High Corrosion resistant and Low maintenance, Plastic gears finding their application in every industries. Polymer Ether Ketone is a family of plastic material available. PEK material will be considered as most superior polymer material even over existing PEEK material. It could well lead to more than 70% weight reduction, more than 3 db of noise reduction and more than 80% reduction in moment of inertia when used as gear material over standard metal materials commonly used in gear industry. PEK has more resistance to high pressure water and steam, higher melting point temperature and glass transition temperatures as against PEEK. Besides, Strength, wear and thermal properties of PEK makes it perfect replacement of PEEK material. Existing applications of PEEK material, mainly in aerospace, surgical implants, oil and gas filters and gears are all set for usage of PEK as substitute for better results. PEK applications can even be 3-d printed using SLS.

II. MATERIAL SELECTION
In this papers following two materials are considered and analyzed for loading conditions.
1. PEK
2. Cast iron

PEK: Ultra-high Performance Thermoplastic (Poly Ether Ketone) material, virgin, semi crystalline granules suitable for injection molding, easy flow, Beige in color. Application Areas: Suitable for high temperature application, high wear & abrasion resistance, high chemical resistance & for metal to plastics conversion etc.

Cast Iron: Cast iron is a group of iron-carbon alloys with carbon content greater than 2%. Cast iron has good compressive strength but relatively poor tensile strength. Because of the impurities in cast iron and its crystalline structure, although it is a strong material in compression, it is weak in tension and is very brittle. The alloy constituents affect its color when fractured: white cast iron has carbide impurities which allow cracks to pass straight through.

<table>
<thead>
<tr>
<th>Properties</th>
<th>PEK</th>
<th>Cast Iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>1300</td>
<td>7200</td>
</tr>
<tr>
<td>Young’s Modulus</td>
<td>4300</td>
<td>165000</td>
</tr>
<tr>
<td>Yield Stress</td>
<td>110</td>
<td>140</td>
</tr>
</tbody>
</table>

III. GEAR DESIGN
A. INTRODUCTION:
Gears are defined as toothed wheel used for transmitting both motion and power from one shaft to another shaft by successive engagement of teeth.

Gears are mainly classified
A. According to the position of axes of shaft
 1. Parallel
 2. Intersecting
 3. Non-intersecting and non-parallel

B. According to peripheral velocity of gears
 1. Low
 2. Medium
 3. High

C. According to type of gearing
 1. External
 2. Internal
 3. Rack and pinion

B. BASIC PARAMETERS OF SPUR GEAR

Revised Version Manuscript Received on January 28, 2016.
Devikant Baviskar, Mechanical Department, Bharati Vidyapeeth College of Engineering, Navi Mumbai, India.
Balbheem Kamanna, Research & Development Centre, Matrix Cad Academy, Navi Mumbai, India.
Gauri Tembe, Mechanical Department, Bharati Vidyapeeth College of Engineering, Navi Mumbai, India.
Kajal Juikar, Mechanical Department, Bharati Vidyapeeth College of Engineering, Navi Mumbai, India.
• Module: It is the ratio of the pitch circle diameter in millimeter to the number of teeth.
• Addendum: It is the radial distance of a tooth from the pitch circle to the top of the tooth.
• Dedendum: It is the radial distance of a tooth from the pitch circle to the bottom of the tooth.
• Tooth Thickness: The thickness of the tooth along the pitch circle is called the tooth thickness.
• Face width: It is the width of gear tooth measured parallel to its axis.
• Pressure Angle: The angle between the line joining the centers of the two gears and the common tangent to the base circles.

C. SPUR GEAR TOOTH PROFILE DESIGN

Consider a Gear made of
Module (m) = 4,
Number of Teeth (Z) = 18
Pressure Angle (α) = 20°

Other Tooth parameters are calculated by Involute teeth standards.

Pitch Circle Diameter (D) = module × Number of Teeth
\[D = 4 \times 18 \]
\[D = 72 \text{mm} \]

Circular pitch (c) = \[\frac{\pi D}{60} = \frac{\pi \times 72}{60} = 12.568 \]

Diametral pitch (D.P) = \[\frac{D}{18} = 0.25 \]

Addendum = m = 4 mm

Dedendum = 1.25m = 5 mm

Tooth Thickness = 1.5708m = 6.2832 mm

Fillet radius = 0.4m = 1.6 mm

Working Depth = 2 m = 8 mm

Whole Depth = 2.25m = 9 mm

Addendum Circle diameter = 2×Addendum+ Pitch Circle Diameter
\[= 2 \times 4 + 72 \]
\[= 80 \text{ mm} \]

Dedendum Circle Diameter
\[= \text{Pitch Circle Diameter} - 2 \times \text{Dedendum} \]
\[= 72 - 2 \times 5 \]
\[= 62 \text{ mm} \]

Clearance Depth = 0.25×m = 1 m

IV. DESIGNING OF SPUR GEAR

A. ASSUMPTION:
• Effect of radial load (P_r) which induces compressive stress is neglected.
• Tangential load (P_t) is uniformly distributed over the entire face width.
• The effect of stress concentration is neglected.
• At any time, only one pair of teeth is in contact i.e. contact ratio is 1.
• The tooth is assumed to be cantilever.
• Selecting 20° full depth involute tooth system.

B. TANGENTIAL TOOTH LOAD CALCULATION:
Considering gear to transmit power of 10 KW rotating with a speed of 500 rpm. The following parameters are calculated.
Considering factor of safety: FOS=4
Mean velocity is

\[\nu = \frac{\pi DN}{60} = \frac{\pi \times m \times N}{60} = \frac{\pi \times 0.004 \times 18 \times 500}{60} = 1.88 \text{m/s} \]

Velocity factor is
\[c_v = \frac{3 + \nu}{3} = \frac{3 + 1.88}{3} = 1.627 \]

Apply the Lewis equation
\[y_p = \pi \left(0.154 - \frac{3.912}{18} \right) = \pi \left(0.154 - \frac{0.912}{18} \right) \]
\[y_p = 0.3246 \]

Tangential load is calculated as follows
\[f_t = m \times b \times y_p \times \sigma_b = m \times b \times y_p \times \sigma_y \times c_v = 84.50 \times c_v \times (N) \]

Bending strength is
\[\sigma_b = \sigma_y \times c_v = 27.5 \times 1.627 = 44.74 \text{ MPa} \]

VI. MODELLING OF SPUR GEAR

Spur gear is modeled in SOLIDWORKS 2015 using Parametric Design, so that it can be easily editable as per customer requirement means Customization becomes very easy. Parameters required for Designing of spur gear is calculated analytically.

V. ANALYSIS

Finite element analysis of Spur gear is analyzed using ANSYS 14.0. By FEM we calculated the Bending stress produced in the spur gear when it is considered as a cantilever beam subjected to transverse tangential load. Simulation results of spur gear are shown below.
VII. RESULTS

Finite Element Method results shows that bending stress produced in PEK gear is less as compared to Cast iron Gears. These values are calibrated by analytical method to find the bending stress.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Von misses Stress, MPa</th>
<th>Analytical Stress</th>
<th>FEA Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEK</td>
<td>44.77</td>
<td></td>
<td>65.254</td>
</tr>
<tr>
<td>Cast Iron</td>
<td>56.45</td>
<td></td>
<td>84.038</td>
</tr>
</tbody>
</table>
VIII. CONCLUSION

Analytical and Finite Element Methods are applied to check the Bending stress produced in the spur gear. The results show that spur gear made from PEK has more bending strength than Cast Iron Spur gear. Also the Density of PEK is also less than the cast iron. So by replacing cast iron Gear by PEK gear we can achieve high strength, Low Weight and Noise free Motion of Gears.

REFERENCES

