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Abstract: Today we have seen so much digital uncertain data 

produced. Handling of this uncertain data is very difficult. 

Commonly, the distance between these uncertain object 

descriptions are expressed by one numerical distance value. 

Clustering on uncertain data is one of the essential and 

challenging tasks in mining uncertain data. The previous 

methods extend partitioning clustering methods like k-means and 

density-based clustering methods like DBSCAN on uncertain 

data based on geometric distances between objects. Such method 

facing the problems with the data that they cannot handle 

uncertain objects that are geometrically indistinguishable ( such 

as weather data across the world at same time). In this paper, we 

model uncertain objects in both continuous and discrete domains 

with the help of probability distribution. We use Kullback-Leibler 

divergence to measure similarity between uncertain objects in 

both the continuous and discrete Values, and integrate that into 

partitioning and density-based clustering methods to cluster 

uncertain objects. We first find out uncertain objects and then we 

cluster uncertain data according to partitioning based clustering. 

Then remaining data we clustered by using any traditional 

method of clustering. 

Index Terms—Clustering, Uncertain Data, Probabilistic Mass 

Function, Probabilistic Density Estimation, Fast Gaussian 

Transform. 

I. INTRODUCTION 

Data is mostly associated with uncertain values because of 

measurement inaccuracy, sampling discrepancy, outdated 

data sources, or other errors. This is true for applications 

that require interaction with the physical world, such as 

sensor monitoring and location-based services. For example, 

in the scenario of moving objects (such as vehicles or 

people), it is impossible for the database to track the exact 

locations of all objects at all-time instants. Therefore, the 

location of each object is associated with uncertainty 

between updates. These various sources of uncertainty have 

to be considered in order to produce accurate query and 

mining results. Clustering uncertain data has been well 

recognized as an important issue. Uncertain data object can 

be represented by a probability distribution. The problem of 

clustering uncertain objects according to their probability 

distribution happen in many cases [1]. For Example, a 

weather station monitors weather conditions including 

various measurements like temperature, precipitation 

amount, humidity, wind speed, and direction [1]. The daily 

weather record varies from day to day, which can be 

modeled as an uncertain object represented by a distribution 

over the space formed by several measurements. Can we 

group the weather conditions during the last month for 

stations.  
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Essentially, we need to cluster the uncertain objects 

according to their distributions [1]. 

II. LITERATURE SURVEY 

The previous studies on clustering uncertain data are largely 

various extensions of the traditional clustering algorithms 

designed for certain data. As an object in a certain data set is 

a single point, the distribution regarding the object itself is 

not considered in traditional clustering algorithms.Thus, the 

studies that extended traditional algorithms to cluster 

uncertain data are limited to using geometric distance-based 

similarity measures, and cannot capture the difference 

between uncertain objects with different distributions. 

Specifically, two principal categories exist in literature, 

namely partitioning clustering approaches [4], [8] and 

density-based clustering approaches [2], [5]. As these 

approaches only explore the geometric properties of data 

objects and focus on instances of uncertain objects, they do 

not consider the similarity between uncertain objects in 

terms of distributions. Let us examine this problem in the 

existing categories of approaches in detail. Suppose we have 

two sets A and B of uncertain objects. The objects in A 

follow uniform distribution, and those in B follow Gaussian 

distribution. Suppose all objects in both sets have the same 

mean value (i.e., the same center). Consequently, their 

geometric locations (i.e., areas that they occupied) heavily 

overlap. Clearly, the two sets of objects form two clusters 

due to their different distributions. Partitioning clustering 

approaches: Extend the k-means method with the use of the 

expected distance to measure the similarity between two 

uncertain objects. The expected distance between an object 

P and a cluster center c (which is a certain point) 

isED(P. c) = ∫ fP(x)dist(x. c)dx
P

 where fp denotes the 

probability density function of P and the distance measure 

dist is the square of Euclidean distance. In  it is proved that 

ED(P.c) is equal to the dist between the center (i.e., the 

mean) P.c of P and c plus the variance of P. That is, 

ED(P.c)= dist(P.c.c) + Var (P).  Accordingly, P can be 

assigned to the cluster center  argminc{ED(P. c)} =
argminc{dist(P. c. c)}  Thus, only the centers of objects are 

taken into account in these uncertain versions of the k-

means method. In our case, as every object has the same 

center, the expected distance-based approaches cannot 

distinguish the two sets of objects having different 

distributions[4], [8]. Density-based clustering approaches: 

Extend the DBSCAN method in a probabilistic way. The 

basic idea behind the algorithms does not change—objects 

in geometrically dense regions are grouped together as 

clusters and clusters are separated by sparse regions. 

However, in our case, objects heavily overlap.  
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There are no clear sparse regions to separate objects into 

clusters. Therefore, the density-based approaches cannot 

work well [ 2], [5], [8]. 

III. OUR IDEAS AND CONTRIBUTIONS 

Similarity measurement between two probability 

distributions is not a new problem at all. In information 

theory, the similarity between two distributions can be 

measured by the Kullback-Leibler divergence (KL 

divergence) [3].The distribution difference cannot be 

captured by geometric distances. For example the two 

objects (each one is represented by a set of sampled points) 

have different geometric locations. Their probability density 

Functions over the entire data space are different and the 

difference can be captured by KL divergence, although the 

geometric locations of the two objects are heavily 

overlapping, they have different distributions (one is 

uniform and the other is Gaussian). The difference between 

their distributions can also be discovered by KL divergence, 

but cannot be captured by the existing methods. We 

consider uncertain objects as random variables with certain 

distributions. We consider both the discrete case and the 

continuous case. Directly computing KL divergence 

between probability distributions can be very costly or even 

infeasible if the distributions are complex. Although KL 

divergence is meaningful, a significant challenge of 

clustering using KL divergence is how to evaluate KL 

divergence efficiently on many uncertain objects. We 

develop a general framework of clustering uncertain objects 

considering the distribution as the first class citizen in both 

discrete and continuous cases. Uncertain objects can have 

any discrete or continuous distribution. We show that 

distribution differences cannot be captured by the previous 

methods based on geometric distances. We use KL 

divergence to measure the similarity between distributions, 

and demonstrate the effectiveness of KL divergence in both 

partitioning and density-based clustering methods.  

IV. MATHEMATICAL MODEL 

Uncertain Object and Probability Distributions: 

We consider the dataset in two domains (i.e. discrete and 

continuous). If the object is discrete random variable then its 

probability distribution is represented by a probability mass 

function. The probability mass function of an uncertain 

objects is directly estimated by the sampling the number of 

observation. The pmf of object P is,  

P(x) =
|pℇP ∣ p = x|

|P|
 

Where pℇ P is an observation value of P and |.| is the 

cardinality of a set. Otherwise, if the domain is continuous 

then the object is a continuous random variable and its 

probability distribution is calculated probability density 

function For example, cameras rating is a discrete set 

{1,2,3,4,5} and the domain of temperature is continuous real 

numbers. For continuous domains, we estimate the 

probability density function of an uncertain object by kernel 

density estimation. Kernel density estimation  is a 

nonparametric way of estimating the probability density 

function of a continuous random variable. Given a sample of 

a continuous random variable P, the kernel density estimate 

of the probability density function is the sum of |P|kernel 

functions. Each Gaussian kernel function is centered at a 

sample point p ℇ P with variance h. h is called the 

bandwidth, and is used to control the level of smoothing. A 

popular choice of the bandwidth is the Sliverman 

approximation rule for which h = 1.06 ∗ δ|P|−
1

5, where 𝞭 is 

the standard deviation of the sample points of P. The density 

estimator is 

P(x) =
1

|P|√2πh
∑ e

−
(x−p)2

2h2

pℇP

 

KL Divergence: 

KL divergence between two probability distributions is 

defined as follows. Kullback-Leibler Divergence. In the 

discrete case, let f and g be two probability mass function in 

a discrete domain ID with a finite or countably infinite 

number of values. The Kullback-Leibler diverge between f 

and g is 

D( f   ⃦ g) = ∑ (f(x) log
f(x)

g(x)
)

x ε ID

 

In continuous case, let f and g be two probability density 

functions in a continuous domain ID with a continuous 

range of values. The Kullback0Leibler divergence between f 

and g is 

D( f  ⃦ g) = ∫ (f(x) log
f(x)

g(x)
)

ID

 

In both discrete and continuous cases, KL divergence is 

defined only in the case where for any x in domain ID if f(x) 

> 0 then g(x) > 0.  

V. IMPLEMENTATION DETAILS 

Algorithms 

KL-Divergence algorithm: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input dataset D = {D1,D2,D3,…..,DN} 

Output dataset C = {C1,C2,C3,…….,CN} 

Step 1 : Get the dataset 

Step 2 : Read dataset into 2-D vector 

Step 3 : For each row  

        Step 3.1 : Calculate power set   

        Step 3.2 : Calculate Count / N 

                       Where count = no of match 

                                    N      = total no of elements                  

in row 

Step 4 : END for 

Step 5 : Set variance h (Silverman bandwidth) 

Step 6: Identify sample point p 

Step 7 : For each h α p 

        Step 7.1 : Take variable M 

        Step 7.2 : M = 𝑒−
(𝑥−𝑝)∗(𝑥−𝑝)

2∗ℎ∗ℎ  

Step 8 : END for 

Step 9 : Gaussian parameter P =
𝑀

√2∗𝜋∗ℎ
 

Step 10 : For each row 

   Step 10.1 : -log(
𝑆

𝑃
) 

Step 11 :END for 

Step 12 :  Identify elements near to infinity 

Step 13 : Add into similar Ci 

Step 14 : Display all vectors according to cluster 

Ci={C1,C2,C3,…….,CN} 

Step 15 : END 
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Flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Density Based Clustering Algorithm 

CreateClusters (D, eps, MinPts) 

C=0 

For each unvisited point P in dataset D 

 Mark P as visited 

 NeighborPts = regionQuery (P, eps) 

If sizeof(NeighborPts) <MinPts 

Mark P as NOISE 

Else 

 C= next cluster 

ExpandCluster(P,NeighborPts,C,eps, MinPts)  

Input: 

 

Above dataset having so many attributes out of that Date, 

StationId, Temperature, precipitation, pressure, wind child 

and sunshine are used. Output: We are getting the better 

performance by using probability mass function (pmf) and 

probability density function (pdf) for discrete random 

domain variables and continuous random variable 

respectively. We are also trying to tune the performance of 

algorithm. When you are using K-Means or DB-Scan 

algorithm directly on uncertain data to cluster the data they 

shows poor results. But when you are using KL-Divergence 

algorithm with K-Means or DB-Scan algorithm to cluster 

data then it shows good performance. KL-Divergence firstly 

cluster all infinite distance data into separate cluster. So you 

can avoids data loss. 

K-Means : 

Following snapshots of K-Means algorithm. When you are 

applying k-means algorithm directly on uncertain data it 

shows poor results. We applying K-Means algorithm 

directly on uncertain data which snapshot is attached in 

input. Here we consider two attributes of dataset ie.  

 

 

FIND PROBABILITY ACCORDING TO 

KL_DIVERGENCE  ie -log(
𝑆

𝑃
) 

 

FIND GAUSSIAN PARAMETER 

FOR EACH ROW CALCULATE POWER SET 

 

SORT ROWS OF DATASET ACCORDEING 

TO PROBABILITY VALUE OF EACH ROW IN 

DESCENDING ORDER 

DATASET 

END 

JAVA FILE READER 

JAVA OBJECT PER DATA ROW 

DECIDE NO OF ATTRIBUTES FOR 

CLUSTERING  FROM DATASET 

DATASET 

ACCORDING TO USER TAKE FIRST  X % OF 

UNCERTAIN DATA FROM SORTED DATA 

CLUSTER DATA 

END 
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Temperature(6th column) and wind child(12th column).But 

due to uncertainty in input dataset it shows poor results. In 

following snapshot we taken user input for  4 clusters. It 

shows 4 clusters according to K-Means algorithm. 

 

 

 

KL-Divergence with K-Means 

Following snapshots of KL-Divergence with K-Means 

algorithm. Here we applied first KL-Devergence algorithm 

to cluster uncertain data which shows high uncertainty. We 

sort all data rows according to probabilistic similarities 

between all data in descending order.  Here we taken first 

20% data as uncertain data. That data we clustered into 3 

cluster. Then after that we removed that data and weagain 

apply K-Means algorithm for remaining 80% data. We have 

made 4 clusters of that data. Due to removed uncertain data 

K-Means shows good performance. Also we avoid data loss. 

Following four snapshots are showing clusters of KL-

Divergence as well as clusters of clusters of K-Means 

algorithm. 
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VI. ANALYSIS 

In analysis graphs we are showing precision and recall with 

respected to K-means , DB-Scan and KL with K-means 

algorithm. 

Precision Graph: 

 

Recall Graph: 

 

VII. CONCLUSION 

We are using KL divergence as the similarity measurement 

for clustering uncertain data based on the similarity between 

their distributions of objects in the continuous and discrete 

cases. We used KL divergence into the partitioning and 

density- based clustering methods and got the quality 

results. The uncertain DBSCAN method all require 

evaluation of KL divergences of many attributes of the 

objects. As the number of uncertain objects and the sample 

size of each object increase, it is costly to evaluate a large 

amount of KL divergences expressions. The work is 

required to save the computation. 
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