
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-3 Issue-5, June 2014

142

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number E3159063514/14©BEIESP
Journal Website: www.ijeat.org

 A Survey on Graph based Web Service Discovery

and Composition Techniques

Monowar Hussain, Arnab Paul

Abstract— Web Service composition technique provides the

features to users that an individual web service cannot perform.

There are several web services available over the web for

performing different tasks. When there is no unique service

capable of performing user request, there must be some way to

sufficiently compose basic services to satisfy the user’s request.

Now it becomes very important to determine which service

composition system is the most efficient one. This paper presents

the requirement for service composition, the required technologies

to perform service composition. It also provides several different

graph based web service composition techniques. At service

composition time, the composition of these services depends on the

requester’s inputs, outputs parameters and other non-functional

parameters. Web service composition is a difficult task due to the

asymmetric nature of results of the various services. In order to

evaluate the best approach, various composition approaches were

justified. We consider number of comparative parameters for

evaluating the best composition plan.

Index Terms—Web Services, Semantic Web Services, Web Service

Discovery, Graph Based Web Service Composition.

I. INTRODUCTION

Web services are well defined, self described and reusable

software components that can be used over the internet with

the help of technologies like SOAP (Simple Object Access

Protocol) as a communication protocol, WSDL (Web Service

Definition Language and Universal Description),UDDI

(Discovery and Integration) that provides a mechanism to

find existing web services. A web service can be defined as

atomic or non-atomic (set of related components) which can

be accessed through interface over the internet. Web services

are loosely coupled fashion, allows ad-hoc, dynamic binding

and are reusable software components. Web services can be

classified into three categories and three entities based on

their properties. The categories are registration, discovery

and binding; and the entities can be defined as service

requester, service provider and the repository (UDDI) [1].

The roll of web service repository where the service provider

publishes is one of the most important aspects of the web that

can reduce the overhead of service provider and explore the

business. In present scenario web services are described in

the form of WSDL format and it contains the syntactic

description only.

Manuscript published on 30 June 2014.
* Correspondence Author (s)

Monowar Hussain*, Department of Information Technology, Triguna

Sen School of Technology, Assam University, Silchar, Assam, India.
Arnab Paul, Department of Information Technology, Triguna Sen School

of Technology, Assam University, Silchar, Assam, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the
CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

It only reflects the structure of the data which communicate

between service requester and service provider over the web,

but is unable to describe the semantic meaning of the data.

And this leads the automatic web service composition

difficult. In automatic web service discovery and

composition, the semantic description and execution order of

web services are important.

II. DEFINITION OF WEB SERVICES AND SEMANTIC

WEB SERVICES

A. Web Services

Web services are independent, modular units of application

logic which provide business logic to other applications via

Internet. They allow communicating with business partners

and their processes by means of a stateless model of “atomic"

synchronous or asynchronous message passing. Web service

interactions occur with the help of two specification

languages: the Simple Object Access Protocol (SOAP) and

the Web Service Definition Language (WSDL). They are

platform and language-independent communication protocol

that define an XML-based format for web services to

exchange information over HTTP by using remote procedure

calls. WSDL is an XML-based language which defines the

interface that a web service exhibits in order to be invoked by

other services. WSDL thus provides a functional description

of web services consisting of inputs, outputs and exception

handling [15].

B. Semantic Web Services

The semantic web provides functional and non-functional

description of web services which models the pre-conditions

and post-conditions of the web service so that the

determination of the domain can be logically inferred. It

relies on ontology’s to formalize the domain constraints what

are shared among services. The goal of semantic web

especially in present scenario regarding semantic web

services is to fully automate the web services lifecycle. The

semantic web considers the World Wide Web as a common

connected data repository where web pages are remarked

with semantic annotations. These annotations describe about

web resources and their properties described in the RDF

(Resource Description Format) [2] and the OWL-S ontology

to describe further interaction and/or properties like

equivalences, lists, and data types. With the semantic web

technology, it is possible to write realistic and powerful

applications that use annotations and appropriate inference

engines to automatically discover execute and integrate web

services [3].

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Survey on Graph based Web Service Discovery and Composition Techniques

143

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number E3159063514/14©BEIESP
Journal Website: www.ijeat.org

III. CURRENT WEB SERVICE COMPOSITION

TECHNIQUES

A. Manual or Static Composition

The static means that the service requester should build an

abstract process model before beginning the composition; the

abstract model includes a set of tasks and their data

dependency. Each task contains a query clause which used to

search the particular web service which will satisfy the task.

For static composition there are two possible approaches

available, viz, web service orchestration and choreography.

In orchestration, existing web services are composed with

the help of a central coordinator, which is responsible for

invoking and composing the single sub-activities. In

choreography, there is no assume of a central coordinator,

but it defines complex tasks via the definitions of the

conversation that should be undertaken by each participant.

In static composition, the aggregation of service is done at

design time and composition is performed manually, means

that each and every web service is executed one by one in

order to achieve the required goal. This type of composition

is not flexible [4].

B. Dynamic Service Composition

Web services are designed to support interoperability

between different applications. Web services are platform

independent as well as language independent. Because of

these properties, the interfaces of web services allow an easy

integration of heterogeneous systems. UDDI, WSDL and

SOAP define standards for service discovery, description,

and communication protocols. These web service standards

however do not deal with dynamic composition of existing

services. Business Process Execution Language for Web

Services (BPEL4WS) focuses on representing composition

where flow of the information and the binding between

services are known a priori [17]. Dynamic composition of

web services are more challenging problem. In particular,

when a user request cannot be satisfied by a unique service;

but the existing services can be combined to fulfill the

demand. The dynamic composition of services requires the

locality of services based on their capabilities and the

recognition of those services that matched and could

participate in composition, as described. The full automation

of web service composition process is still an area of ongoing

research, but accomplishing this aim with a human controller

as the decision maker has already been achieved. The main

problem for full automation of service composition is the

asymmetry between the concepts that people use and the data

that computers interpret. This can be overcome by using

semantic web technologies [4]. Many approaches of web

services composition methods have been proposed in recent

years. In this portion, we discuss a brief overview of some

techniques that deals with the web service composition. We

survey only those techniques that use service dependency

concepts and graph models. We can define dependency as

whenever a web service receives some inputs and provides

some outputs; the outputs are somehow related or dependent

on the received inputs. By using a graph model, the properties

of existing web services can be defined in terms of their

input-output parameters, as well as semantic description

about the web data. A graph contains set of vertices or nodes

and set of edges that link pairs of vertices. A graph may be

directed or undirected from one vertex to another. In a

weighted graph, each edge is associated with a weight (some

number). The dependency graph is used in web service

composition to find out those web services which are

participating in web service composition to satisfy a user’s

demand. Most of the composition methods that are based on

graph theoretic approaches build web service dependency

graphs dynamically. Graph search algorithms are used for

traversing the dependency graphs in order to compose

services. These methods can be distinguished based on how

they search the dependency graph. A*, BF*, Dijkstra, Floyd

Warshall, Forward chaining, Backward chaining,

Bidirectional, BFS, DFS, Ford Fulkarson (Maxflow), Greedy

search algorithms are examples of the most familiar search

algorithms.

IV. COMPOSITION ISSUES

In 2005, Altheya Lang and Y.W.Su [5] presented a model for

web service composition based on AND/OR graph, and a

graph search algorithm for searching the graph to find out the

composite service(s) that satisfies a user request. For a given

service request that only can be fulfilled by a composition of

web services, their algorithm find the service categories that

are relevant to the request and dynamically create an

AND/OR graph to grasp the functional dependencies among

the web services of these service categories. The graph is

changed based on the information reflected in a request. The

search algorithm is used to search the changed AND/OR

graph for a minimal and adequate composite service template

that satisfies the service demand. The algorithm can be

executed repeatedly on the graph to find out different

templates until the result is considered by the service

requester. In 2011, Elmaghraoui [6] proposed a model for

web service composition based on graph. They presented a

solution for minimizing the computation effort in web service

composition. They represented the semantic relationship

between the participating web services through a directed

graph. Then, they computed all pair shortest paths using a

new version of the Floyd-Warshall’s algorithm. Semantic

similarity is referred as the degree of matching between

concepts. To compute the semantic matching among

services, they use subsume reasoning as originally proposed

by Paolucciet al [7]. Subsume logic checks whether a concept

is more general than other. Given two web services defined

by vertices Vi and Vj this reasoning allows evaluating the

degrees of similarity between the services using the scales:

equivalent, subclass, subsumes and the below rules:

a) Exact match: If the outputs of Vi and the inputs of Vj

are fully matched.

b) Plug-in match: If the output of Vi is a sub-concept of

the input of Vj (Vj subsumes Vi)

c) Subsumes match: If the input of Vj is a sub-concept of

the output of Vi. (Vi subsumes Vj)

d) Fail match: Neither subsumption nor equivalence

relation between Vi and Vj. Thus, we link an edge

connecting vertices Vi to Vj if the degree of similarity

between the outputs of Vi and the inputs of Vj is fall

under above three condition. Weight of the graph is

calculated based on degree of semantic similarity and

some QoS parameters.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-3 Issue-5, June 2014

144

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number E3159063514/14©BEIESP
Journal Website: www.ijeat.org

The work of Mahmoud, Bettahar and Saidi published in 2013

[8] can be considered as significant one. They proposed a

model for automatically composing web services with the

help of the directed graphs. The graph also describes the Web

services, and the ordering of web services execution. In

contrast, the user query, defined by a set of inputs and outputs

parameters, can be stated as a directed graph composed of

web services. They used web service as a function: Web

service (Parameters, State-of-the-world), where parameters

are input, output and state of the world is pre-condition and

effects. Hashemian et al. [9] The authors uses dependency

graph to store the I/O dependencies between existing Web

services, and then composition of services is made by using a

graph search algorithm. In their graph, each service and I/O

parameters are denoted as a vertex; service’s input/ output are

denoted as incoming and outgoing edges, correspondingly.

Here the authors considered the dependencies between input

and output parameters only but they are not considering

semantics description, thus they cannot guarantee that the

produced composite services satisfy the requested

functionality correctly. Talantikite et al. [10] proposed a

method where a network of services that are pre-computed,

stored and connected by their I/O parameters. The

relationship between services is constructed by using

semantic similarity functions depending on ontology. They

represented the relationship among services using a graph

structure. Their model used the backward chaining along

with depth-first search algorithms to find the sub-graphs that

contain relevant services which satisfy the requester demand.

They proposed a solution to select the minimally composite

services. However, their work constructs the graph at

composition time which leads to computational overhead.

The proposed approach of Arpinar et al. [11] used the

concept of graphs for web service composition along with

semantic similarity. They considered the weight associated

edges and applied Bellman-Ford’s algorithm for computing

the shortest path. Weight of an edge is calculated by

combining execution time of a service and input/output

similarity. But nowhere have they mentioned anything about

the non-functional parameters of web services. Aydogan, H.

Zirtiloglu [12] used the backward chaining method along

with depth first search algorithm to find the required services

for a complex request. Their solution for web service

composition is slightly abstract and does not clearly mention

the execution plan of the algorithm. Gekas et al [13]

developed a service composition task as a multilink graph

network having no size limits and they dynamically observe

the network structure to derive useful heuristics to instruct the

composition task. Web services are described through a

graph network and graph is constructed dynamically during

the composition. For minimizing the graph searching time, a

set of heuristics are used. But the authors claim that graph

construction during composition is very inefficient in term of

computation and thus it limits the scope of applicability of

graph-based models towards web service composition

problem. Nacera Temglit and Ahmed Nacer [14] proposed a

basic work on how to build a flow graph of services and how

to discover all possible plans of service composition from the

graph satisfying a functional need of users formulated as

inputs outputs parameters. The most interesting aspects of

their solution are: the user does not have to specify the

composition schema or participant services in his query; the

user has to provide only Input and Output parameters of the

desired service using his own vocabulary. The composite

service is discovered dynamically and transparently for the

request. Their proposed approach of composition can answer

dynamically the known and unknown service processes

requested by a user. This is important in web context where

user requirements vary and the availability of services is not

guaranteed. They implemented an index to enhance the

service searching time and hence the response time. In

parallel, they investigated the way of making a graph

database to store the service flow graph. Graph database is

often faster than relational database for associative data sets

(graph data model) and they can scale more easily to huge

data sets because they do not need expensive join operations.

They mostly eliminate the problems of memory

management.

Their matchmaking function is based on two concepts:

a) In chaining two service interfaces by finding

Outputs-Inputs matching; this is called horizontal

matching (See Figure. 1).

b) To retrieve two functionally similar services: user

required service SR and available service SP, by finding

Inputs(SR)-Inputs(SP) and Outputs(SR)-Outputs(SP)

matching; this is called vertical matching (See Figure. 2).

In horizontal matching, S1 match horizontally S2 when some

(for inclusion) or all outputs of S1 are matched (exact or

subsume) by all inputs of S2 (Shown in Figure. 1). In vertical

matching, SR match vertically SP when all the outputs of SR

are matched by all or some (for inclusion) outputs of SP, and

some or all inputs of SR are matched by all inputs of SP (exact,

plug-in). This criteria guarantees that the published matched

service satisfies the need of the searched service, and that the

searched service provides to the matched service all the

inputs it needs to operate correctly. So according to this

assumption, matching function distinguishes four degree of

valid matching:

Exact, Plug-in, Exact inclusion, Plug-in inclusion (Shown in

Figure. 2).

S1 Exact, Subsume, S2 Exact inclusion,

 Subsume-inclusion

Figure 1. Horizontal Matching

SR

SP

Exact, plug-in, exact inclusion, plug-in

 inclusion

Figure 2. Vertical Matching

http://www.ijeat.org/

A Survey on Graph based Web Service Discovery and Composition Techniques

145

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number E3159063514/14©BEIESP
Journal Website: www.ijeat.org

This guarantees that the first service provides to the second

service all the inputs it needs to operate correctly in service

composition context. Semantic similarity measures evaluate

the semantic proximity between web services (to which the

terms of queries and service parameters are attached). For

this purpose they used Zargayouna technique for calculating

semantic similarity indices of matching services. Chan Oh

[15] proposed a graph based model in which they used bloom

filter [1] which is a simple randomized data structure with

minimal space for representing a set in order to support

membership queries efficiently. In this regard, they used the

concept of hash function whose time complexity is O(1). For

graph searching, they used BF*

 Table 1. Evaluation Table

Authors Algorithm used
QOS

Awareness
Advantages Disadvantage

Composition

Pattern

Semantic

Capability

Altheya Lang

and Y. W. Su,

2005

AND/OR

(Explicit) graph

search algorithm

No

1. They used an

admissible graph search

algorithm, so it

guarantees optimal

solution, if one exists.

2. Requester has the

flexibility to choose.

Required high

analysis

Semi-

automatic
No

Elmaghraoui
Floyd-Warshall

algorithm
Yes

Requester gets web

services having low cost

and higher performance

Time complexity is

high(O(n3)) and

negative weight is

not considered

Automatic Yes

Mahmoud,

Bettahar and

Saidi, 2013

Not defined

clearly
No

Uses some

preconditions for

generating optimistic

composition plan

× Automatic Yes

Hashemian BFS algorithm No
Ordering of web service

execution

Does not guarantee

correct service

composition.

Automatic Yes

Talantikite et

al.

Chaining

algorithm
Yes × Time consuming Automatic Yes

Arpinar et al.
Bellman-Ford’s

algorithm
No ×

Non-functional

parameters are not

considered

Semi-

automatic
Yes

Aydogan, H.

Zirtiloglu

Backward

chaining and

depth first

search

No
Provides a better service

composition plan

Does not consider

QoS and cost

parameters

Not defined Yes

Gekas et al. × No ×

Time consuming

and limited

applicability

Automatic Yes

Nacer Temglit

and Ahmed

Nacer

DFS algorithm No

Composition plan can

answer dynamically the

known and unknown

service processes

requested by the user

Non-functional

parameters are not

considered

Automatic Yes

Seog-Chan Oh

et al.
BF* algorithm No

Good efficiency because

of using heuristic

function

If heuristic

becomes zero then

it works like

Dijkstra algorithm

Not defined No

Kun YUE et al.
Greedy

Algorithm
No Time complexity is good

Does not consider

non-functional

attributes

Automatic No

Algorithm which is based on A* algorithm. At each state,

A* algorithm considers some heuristics-based cost to pick

the next state with the lowest cost. Combining this idea

with Bloom Filter, they tried to improve the efficiency and

accurateness of their composition approach. Disadvantage: if

set h(n) = 0, then BF* algorithm degenerates to Dijkstra’s

shortest path algorithm. Yue, Weiyi Liu [16] proposed a

model for web service composition based on type matching

applying the Greedy algorithm. A web service can participate

in composition plan only if the input type parameters are

satisfied, and an atomic service can participate in the result

composition plan only if the output type parameters

contribute to the type list that is required by users.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-3 Issue-5, June 2014

146

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number E3159063514/14©BEIESP
Journal Website: www.ijeat.org

The mutual association degree between two atomic services

is called affinity and based on this affinity value (0<=

affinity(A,B) <=1) the web service graph is constructed.

Affinity value is the weight between two nodes (web

services). They used Greedy algorithms to compose the web

services.

V. CONCLUSION

In this work, we studied a number of papers which describe

web service discovery and composition techniques based on

graph theoretic approaches. Here, we have studied graph

construction techniques, input-output matching techniques,

weight calculation techniques, shortest path selection

techniques of various approaches. We have also compared

various web service composition approaches that are based

on QoS and some non-functional parameters. We have also

evaluated some effective parameters (i.e. semantic

capability) which are described in the above table along with

advantages and disadvantages of various approaches.

REFERENCES

[1] Schahram Dustdar and Wolfgang Schreiner, “A Survey on Web
Services Composition”, Int. J. Web and Grid Services, Vol. 1, No. 1,

2005.

[2] D. Brickley and R. V. Guha, “Resource Description Framework (RDF)
Vocabulary Description Language (Version 1.0): RDF Schema, 2004”,

Available: http://www.w3.org/TR/rdf-schema/

[3] Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi, “A
Survey on Service Composition Approaches: From Industrial Standards

to Formal Methods”, In Proceedings of the Second International
[4] Conference on Internet and Web Applications and Services (ICIW

'07),Washington, DC, USA, 2007 © IEEE Computer Society,

doi:10.1109/ICIW.2007.71
[5] Narges Hashmi Rostami , Eshmaeil Kherkha and Mehrad Jalali, “Web

Services Composition Methods and Techniques: A Review”, IJCSEIT:
International Journal of Computer Science, Engineering and

Information Technology, Vol. 3, No. 6, December 2013

[6] Qianhui Althea Lang, “AND/OR Graph and Search Algorithm for
Discovering Composite Web Services”, International Journal of Web

Services Research, 2(4), pp. 46-64, October-December 2005.
[7] Hajar Elmaghraoui, Imane Zaoui, Dalila Chiadmi and Laila Benhlima,

“Graph based E-Government Web Service Composition”, IJCSI:

International Journal of Computer Science Issues, Vol. 8, Issue 5, No. 1,
September 2011, ISSN (Online): 1694-0814

[8] M. Paolucci et al., “Semantic Matching of Web Services Capabilities”,
In First International Semantic Web Conference, Sardinia, Italy, 2002,

pp. 333-347.

[9] Chaker Ben Mahmoud, Fathia Bettahar, Hajer Abderrahim and Houda
Saidi, “Towards a Graph Based Approach for Web Services

Composition”, IJCSI: International Journal of Computer Science Issues,
Vol. 10, Issue 1, No. 3, January 2013, ISSN (Print): 1694-0784 | ISSN

(Online): 1694-0814

[10] Seyyed Vahid Hashemian and Farhad Mavaddat, “A Graph-Based
Approach to Web Services Composition”, In Proceedings of the 2005

Symposium on Applications and the Internet (SAINT’05)
[11] H. N. Talantikite et al., “Semantic Annotations for Web Services

Discovery and Composition”, Computer Standards Interfaces, 31(6),

1108-1117, Elsevier B.V, 2009.
[12] I. B. Arpinar et al., “Ontology-driven Web Services Composition

Platform”, Inf. Syst. E-Business Management, 2005, 3(2):175–199
[13] Aydogan, H. Zirtiloglu, “A Graph-based Web Service Composition

Technique using Ontological Information”, 2007, Vol. 0. Los Alamitos,

CA, USA: IEEE Computer Society, pp. 1154–1155.
[14] J. Gekas, M. Fasli, “Automatic Web Service Composition based on

Graph Network Analysis Metrics”, In Proceedings of the International
Conference on Ontology, Databases and Applications of Semantics

(ODBASE), Agia Napa, Cyprus, 2005, pp. 1571-1587

[15] Nacera Temglit, Mohamed Ahmed Nacer, “Graph Based Approach for
Dynamic Discovery of Composite Web Services” In 2012 IEEE

Conference on Open Systems (ICOS), Kuala Lumpur, Malaysia, Print
ISBN: 978-1-4673-1044-4, 2012 © IEEE Computer Society, doi:

10.1109/ICOS.2012.6417635

[16] Seog-Chan Oh et al., “BF*: Web Services Discovery and Composition
as Graph Search Problem”, In Proceedings of the 2005 IEEE

International Conference on e-Technology, e-Commerce and e-Service

(EEE-05), 2005 © IEEE Computer Society, Print ISBN: 0-7695-2274-2,

doi: 10.1109/EEE.2005.41

[17] Kun Yue, Mingliang Yue, Weiyi Liu and Xiong Li, “A Graph-Based
Approach for Type Matching in Web Service Composition”, Journal of

Computational Information Systems 6:7(2010) 2141-2149, ©2010
Binary Information Press, Available: http://www.jofcis.com

[18] Antonio Bucchiarone, “A Survey on Services Composition Languages

and Models”, International Workshop on Web Services Modeling and
Testing (WS-MaTe 2006)

http://www.ijeat.org/

