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Abstract-Implementing neural networks on an 8-bit 

microcontroller with limited computing power presents several 

programming challenges. In order for the network to perform as 

quickly as possible, creating the software at the assembly level 

was chosen. Writing the software in assembly allows a level of 

customization that cannot be achieved with C. However, the need 

for hardware portability was also a motivating factor and a more 

generic C implementation was also created. It was also very 

important to manually manage the very limited amount of data 

memory. Several assembly routines were created with this 

purpose in mind. A pseudo floating point arithmetic protocol was 

created exclusively for neural network calculations along with a 

multiplication routine for multiplying large numbers. A tanh 

compatible activation function was also needed. The final 

procedure is capable of implementing any neural network 

architecture on a single operating platform. 

Keywords: Neural   Architecture (NA), Microcontroller, 

Embedded C, Pseudo Floating Point, Activation Function 

I. INTRODUCTION 

The first method was to use 16 bits to represent the weights, 

nodes, and inputs for the neural network. These 16-bits are 

all significant digits in this pseudo floating point protocol. 

The 16 bits consist of an 8-bit signed integer and an 8-bit 

fraction fractional part. The nonconventional part of this 

floating point routine is the way the exponent and mantissa 

are stored. Essentially all sixteen bits are the mantissa and 

the exponent for the neuron is stored elsewhere. This has 

several advantages. It allows more significant digits for 

every weight using less memory. 

II. HARDWARE IMPLEMENTATIONS 

The tools created to build the neural network on the 

microcontroller resulted in an equally challenging project as 

the embedded network. However, creating and debugging 

the assembly version of the neural network would never 

have been possible without the tools. Now with the 

automated system almost any trained network can be 

implemented on the microcontroller in a matter of seconds. 

A pseudo floating point arithmetic protocol was created 

exclusively for neural network calculations along with a 

multiplication routine for multiplying large numbers. A tanh 

compatible activation function was also needed.  
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The final procedure is capable of implementing any neural 

network architecture on a single operating platform. This 

robust base removes the need to modify the structure of the 

software to make network architecture changes. 

2.1. PSEUDO FLOATING POINT 

The first method was to use 16 bits to represent the weights, 

nodes, and inputs for the neural network. These 16-bits are 

all significant digits in this pseudo floating point protocol. 

The 16 bits consist of an 8-bit signed integer and an 8-bit 

fraction fractional part. The nonconventional part of this 

floating point routine is the way the exponent and mantissa 

are stored. Essentially all sixteen bits are the mantissa and 

the exponent for the neuron is stored elsewhere. This has 

several advantages. It allows more significant digits for 

every weight using less memory. This pseudo floating point 

protocol is tailored directly to the needs of the neural 

network forward calculations. This solution requiresthe 

analysis of the weights of each neuron and scales them 

accordingly and assigns an exponent for the entire neuron. A 

similar process is used for the inputs so the entire range will 

share a single scale factor. This scaling is done off chip 

before programming in order to save valuable processing 

time on each and every forward calculation. Scaling does 

two things, first it prevents overflow by keeping the 

numbers within operating regions, and secondly 

automatically filters out inactive weights. For example, if a 

neuron has weights that are several orders of magnitudes 

larger than others it will automatically round the smallest 

weights to zero. These weights being zero allow the 

calculations to be optimized, unlike using traditional 

floating point arithmetic. However, if all of the weights are 

the same magnitude they are all scaled to values that 

preserve maximum precision and significant digits. In other 

words, the weights are stored in a manner that minimizes 

error on a system with limited accuracy. Thus far, all of 

thesedecisions for scaling the weights are made before the 

network is programmed on the microcontroller. This process 

has been automated for ease of use. The Neural Network 

Trainer was modified to automatically scale the weights and 

inputs after it trains the network. This is done in Matlab and 

an example of the scaling process can be seen below. 

2.2. MULTIPLICATION 

The Pic18F45J10 microcontroller has an 8-bit by 8-bit 

unsigned hardwaremultiplier. Considering that the hardware 

multiplier cannot handle floating point values or negative 

numbers, a routine was needed to allow fast multiplication 

of fractional values. The multiply routine is passed two 

sixteen bit numbers, consisting of an eight-bit integer and an 

eight bit fraction portion.  
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The routine returns a 32-bit product. The result of the 

multiplication routine is a 32-bit fixed point result shown in 

Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Implementation of 16-bit fixed point 

multiplication using 8-bit hardware 

multiplier. Steps 1-4 are summed with place holders to 

give the final product on the 

result line. Abbreviations: Integer (I) Fractional (F) 

Product (P) Lower-Byte (L) Higher- 

Byte  (H). 

2.3. ACTIVATION FUNCTION 

A soft activation function was needed for the neural 

network. The most common activation function is tanh and 

the definition is shown back in Equation 1. The pure 

definition tanh was not a reasonable solution for several 

reasons. Specifically, the exponents would be very difficult 

to calculate accurately with the limited hardware in a timely 

fashion. A second order approximation of tanh was chosen 

for its accuracy as well as its simple arithmetic calculations. 

Several features were added to the activation function 

besides simply calculating a second order approximation of 

tanh. One of these features analyses the inputs to the 

activation function and converts negative numbers to 

positive numbers to make the internal calculations faster and 

reduce the number of values that must be stored in the 

lookup table. The sign is restored at the end of the activation 

function. Another feature is a check to see if the neuron is in 

saturation. In other words, make sure the net value is within 

a given range. In this case the second order approximation is 

skipped and the neuron is put into saturation. These features 

of the second order approximation can be seen in better 

detail in Figure 2. The routine requires that 30 values be 

stored in program memory. This is not simply a lookup table 

for tanh because a much more precise value is required. The 

tanh equivalent of 25 numbers between zero and four are 

stored. These numbers, which are the end points of the 

linear approximation, are rounded off to 16-bits of accuracy. 

Then a point between each pair from the linear 

approximation is stored. These points are the peaks of a 

second-order polynomial that crosses at the same points as 

the linear approximations. Based on the four most 

significant bits that are input into the activation function, a 

linear approximation of tangent hyperbolic is selected. The 

remaining bits of the number are used in the second-order 

polynomial. The coefficients for this polynomial were 

previously indexed by the integer value in the first step.The 

approximation of tanh is calculated by reading the values of 

yA, yB and ∆y from memory and then the first linear 

approximation is calculated using yA andyB. 
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The next step is the second-order function that corrects most 

of the error that was introduced by the linearization of the 

tangent hyperbolic function. 
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In order to utilize 8-bit hardware multiplication, the size of 

∆x was selected as128. This way the division operation in 

both equations can be replaced by the right shift operation. 

Calculation of y1 requires one subtraction, one 8-bit 

multiplication, one shift right by 7 bits, and one addition. 

Calculation of y2 requires one 8-bit subtraction, two 8- bit 

multiplications and shift right by 14-bits. Ideally this 

activation function would work without any modification, 

but when the neurons are operating in the linear region 

(when the net values are between -1 and 1) the activation 

function is not making full use of the available. 

 

Figure 2: Example of linear approximations (red) and 

parabolas between 0 and 4(magenta). Tanh (green) and 

the approximation (blue) are also shown on the graph. 

Only 4 divisions were used for demonstration purposes. 

The activation function is tested in hardware by sending a 

set of numbers from -5 to +5 and comparing them to the 

output of the tanh function. The difference between the sets 

of numbers can be seen in Figure 3. 

 
Figure 3. Error from tanh approximation using 6 

divisions from -5 to +5. 
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2.4. MEMORY STRUCTURES 

The Microchip PIC 18F45J10 microcontroller was used to 

implement the neuralnetwork. The microcontroller has only 

one true register that can be used for holding data, passing 

data, and ALU calculations. It has 1 Kbyte of ram memory 

and when the neural network has 255 .This memory is 

divided into four 256 byte banks. Only one of these banks 

can be accessed directly without the use of extra addressing 

instructions. This one bank has 128 bytes of general purpose 

memory and 128 bytes of processor configuration memory. 

This general purpose memory is used as global and 

temporary variables for calculations. The other three banks 

are used for the weights and the individual nodes of the 

neural network. The weights are stored as 16-bit numbers, 

which consist of an 8-bit integer and an 8-bit fractional part. 

Two banks are used to store the high and low byte of each 

weight. This allows for 255 weights to be stored. The zero 

location is not used for indexing reasons. Figure 13 shows 

the memory mapping. As the output of the neural network is 

calculated the output of each neuron and the inputs need to 

be stored throughout the entire calculation to allow multi-

layer connections. These node values are also 16-bit values. 

This poses a problem because there is only one ram bank 

left and two banks are needed. This problem is solved by 

splitting this bank into two separate banks; the low bank and 

high bank hold the low byte and high byte respectively. 

Notice this adds an additional limitation to the neural 

network size. The network may only have 127 total inputs 

and nodes. This limitation will most likely not be the 

dominant factor in many cases. Typically the weight 

limitation would be met prior to approaching the node limit. 

This memory limitation is only relevant to this 

microcontroller. This concept could be extended to other 

microcontrollers or systems with extended ram. More ram 

could easily allow for even larger networks with greater 

numbers of neurons and weights. The C version of the 

software stores all weights and architecture values in 

program memory not in RAM. There simply is not enough 

ram for the C version to function if these values are in ram. 
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Figure 4. Memory Allocation Table for Pic18F45J10 

 

III. NEURON BY NEURON COMPUTATION PROCESS 

3.1. FORWARD CALCULATIONS 

This process of forward calculations is a unique method 

compared to most neural network implementations because 

it uses the Neuron By Neuron method. This method requires 

special modifications due to the fact that assembly language 

is used with very limited memory resources. The process is 

written so that each neuron is calculated individually in a 

series of nested loops; see Figure 14. The number of 

calculations for each loop and values for each node are all 

stored in two simple arrays in memory. The assembly 

language code does not require any modification to change 

the network’s architecture. The only change that is required 

is to update these two arrays that are loaded into program 

memory. These arrays contain the architecture and the 

weights of the network and are generated by NNT. The 

weights are stored in ROM or off chip and are loaded into 

RAM for faster calculations. Finally there are numerous 

constants that are configured such as scale values and 

saturated neuron values. After the initialization block, the 

Main Loop begins. This is an infinite loop that keeps the 

network sampling new inputs and then starting the forward 

calculations. With the next input sampled the network resets 

pointers and index values and enters the Network Loop. 

 

3.2. INDIVIDUAL NEURON CALCULATIONS 

The Neuron calculations go through several steps in order to 

process the pseudofloating point arithmetic. The first step is 

the net value calculation which is shown in Figure 5. 

 
 

 

 

 

 

General 

Purpose 

Memory 

 

Processor 

Setup  

Memory 

 

 

Weights 

High Bytes 

 

 

Weights 

Low Bytes 

High Byte 

Network 

Nodes 

 

Low Byte 

Network 

Nodes 

A
d

d
re

ss
 

http://www.ijeat.org/


 Artificial Neural Network Implementation in Microchip PIC 18F45J10 8-Bit Microcontroller 

134 

Published By: 

Blue Eyes Intelligence Engineering  

and Sciences Publication (BEIESP)  
© Copyright: All rights reserved. 

Retrieval Number E3123063514/14©BEIESP 

Journal Website: www.ijeat.org 

The inputs are multiplied by the corresponding weights and 

the result is stored in the 32-bit Net register. This is 

essentially a multiply and accumulate register designed for 

this particular stage. It is very important to keep all 32 bits 

in this stage for adding and subtracting. Without the 32 bits 

of precision at this step itwould be very easy for an overflow 

to occur during the summing process that would not be 

reflected in the final net value.The next stage is to turn the 

pseudo floating point number into a fixed pointnumber.  

This process can be seen in Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

//Weights  

Number of inputs; Number of outputs; (8-Bit) 

Number of Weights; (8-bit) 

Weight(1), Weight(2), Weight(3)....Weight(N);  

Number of Neurons; 

//Neuron 1 

Neuron Scale, Number of Inputs, Output Node, 

Inputs(1-N) 

//Neuron 2 

Neuron Scale, Number of Inputs, Output Node, 

Inputs(1-N) 

. 

. 

. 

//Neuron N 

Neuron Scale, Number of Inputs, Output Node, 

Inputs(1-N) 

[Forward Calculations of Neurons] 

IV. APPLICATION 

In order to demonstrate that the microcontroller neural 

network is performingcorrectly several example control 

problems were tested. Neural networks have the unique 

ability to solve multi-dimensional problems with many 

inputs and many outputs, however these types of problems 

are not easy to test and verify visually. For this reason the 

network was tested mainly with two input and one output 

problems in order to plot the output as a function of the 

input on a three dimensional surface. This is not the only 

type of problem that can be solved, it is just to demonstrate. 

A two input and two output system is also shown by 

graphing the outputs separately to demonstrate that other 

types of networks will work as well.The process is tested 

with the microcontroller hardware in the loop. In 

otherwords, the sensor data is transmitted via the serial port 

from Mat lab to the microcontroller. The microcontroller 

then calculates the results and transmits this data via the 

serial port back to Matlab. The reason for this simulation is 

to isolate the errors in the system to those produced by the 

microcontroller calculations. The following examples will 

have some or all of the images that are described: 

Training Data --- The training data is the data used to train 

the neural network.The number of points will vary with the 

application. 

Ideal Neural Network -- This refers to a neural network 

running on a computeror a system using the IEEE floating 

point standard. The word ideal refers tomost practical 

applications where there is no significant data loss due to 

theprecision of the calculations. However, this is still a 

neural networkapproximation of the training data and not an 

identical representation. 

PIC Based Neural Network -- This is the output of the 

neural network runningon the PIC hardware. This 

approximation will not be identical to the ideal neural 

network because of the approximations that are made on the 

microcontroller. 

Error Surfaces -- The error surfaces are differences 

between two of thepreviously shown surfaces. The surfaces 

will give a visual description ofdifferences between surfaces 

shown on the same scale as the original surface.This 

comparison separates the error of using an ideal neural 

network and using a neural network with on the PIC. 

Error Surfaces Tight -- These surfaces are the same as the 

error surfaces except on a much narrower scale to show 

what shape the errors have taken. This allows the user to 

identify problem areas or to confirm the error is evenly 

distributed. 

Histograms -- The histograms show the errors of different 

surfaces in a numerical manner. This shows the distributions 

of the errors, in order to identify the distribution of the 

errors. The X-axis is the errors and the Y-axis is the number 

of data points within the corresponding error range. 

V. CONCLUSION 

The software offers the user the option of installing the 

network on a Microchip's 18Fxxxx series microcontroller 

using custom made neural network software written in 

assembly language and optimized for both the 

microcontroller and the neural network application. This 

version offers a very fast and accurate solution on a very 

inexpensive microcontroller. If the user prefers to use a 

different platform then the C code generated can be used to 

implement the trained network on any C capable platform. 

This can be used on other microcontrollers as well as PC 

based neural networks. This accomplishment demonstrates 

that neural networks can be used to solve problems that in 

the past would require custom software programs to be 

written for each problem.  
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In other words, if three separate microcontrollers were 

needed to control three different processes for a single 

project then three unique programs would need to be 

written. This solution offers one standard solution for 

controlling all three. The user simply needs to train three 

separate networks, which is an automated process. Then the 

user has the solutions for unique problems without having to 

write code for the mathematics.  
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