
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-3 Issue-5, June 2014

131

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number E3123063514/14©BEIESP

Journal Website: www.ijeat.org

Artificial Neural Network Implementation in

Microchip PIC 18F45J10 8-Bit Microcontroller

Jnana Ranjan Tripathy, Hrudaya Kumar Tripathy, S.S.Nayak

Abstract-Implementing neural networks on an 8-bit

microcontroller with limited computing power presents several

programming challenges. In order for the network to perform as

quickly as possible, creating the software at the assembly level

was chosen. Writing the software in assembly allows a level of

customization that cannot be achieved with C. However, the need

for hardware portability was also a motivating factor and a more

generic C implementation was also created. It was also very

important to manually manage the very limited amount of data

memory. Several assembly routines were created with this

purpose in mind. A pseudo floating point arithmetic protocol was

created exclusively for neural network calculations along with a

multiplication routine for multiplying large numbers. A tanh

compatible activation function was also needed. The final

procedure is capable of implementing any neural network

architecture on a single operating platform.

Keywords: Neural Architecture (NA), Microcontroller,

Embedded C, Pseudo Floating Point, Activation Function

I. INTRODUCTION

The first method was to use 16 bits to represent the weights,

nodes, and inputs for the neural network. These 16-bits are

all significant digits in this pseudo floating point protocol.

The 16 bits consist of an 8-bit signed integer and an 8-bit

fraction fractional part. The nonconventional part of this

floating point routine is the way the exponent and mantissa

are stored. Essentially all sixteen bits are the mantissa and

the exponent for the neuron is stored elsewhere. This has

several advantages. It allows more significant digits for

every weight using less memory.

II. HARDWARE IMPLEMENTATIONS

The tools created to build the neural network on the

microcontroller resulted in an equally challenging project as

the embedded network. However, creating and debugging

the assembly version of the neural network would never

have been possible without the tools. Now with the

automated system almost any trained network can be

implemented on the microcontroller in a matter of seconds.

A pseudo floating point arithmetic protocol was created

exclusively for neural network calculations along with a

multiplication routine for multiplying large numbers. A tanh

compatible activation function was also needed.

Manuscript published on 30 June 2014.
* Correspondence Author (s)

Er. Jnana Ranjan Tripathy, Department of Computer Science &

Engineering, Biju Pattnaik University of Technology, Orissa Engineering
College Bhubaneswar, Odisha-752050, India.

Dr.Hrudaya Kumar Tripathy, Department of Computer Science &

Engineering, KIIT University,Bhubaneswar, Odisha, India.

Dr. S.S.Nayak,, Centurion University of Technology & Management
Paralakhemundi, Odisha, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

The final procedure is capable of implementing any neural

network architecture on a single operating platform. This

robust base removes the need to modify the structure of the

software to make network architecture changes.

2.1. PSEUDO FLOATING POINT

The first method was to use 16 bits to represent the weights,

nodes, and inputs for the neural network. These 16-bits are

all significant digits in this pseudo floating point protocol.

The 16 bits consist of an 8-bit signed integer and an 8-bit

fraction fractional part. The nonconventional part of this

floating point routine is the way the exponent and mantissa

are stored. Essentially all sixteen bits are the mantissa and

the exponent for the neuron is stored elsewhere. This has

several advantages. It allows more significant digits for

every weight using less memory. This pseudo floating point

protocol is tailored directly to the needs of the neural

network forward calculations. This solution requiresthe

analysis of the weights of each neuron and scales them

accordingly and assigns an exponent for the entire neuron. A

similar process is used for the inputs so the entire range will

share a single scale factor. This scaling is done off chip

before programming in order to save valuable processing

time on each and every forward calculation. Scaling does

two things, first it prevents overflow by keeping the

numbers within operating regions, and secondly

automatically filters out inactive weights. For example, if a

neuron has weights that are several orders of magnitudes

larger than others it will automatically round the smallest

weights to zero. These weights being zero allow the

calculations to be optimized, unlike using traditional

floating point arithmetic. However, if all of the weights are

the same magnitude they are all scaled to values that

preserve maximum precision and significant digits. In other

words, the weights are stored in a manner that minimizes

error on a system with limited accuracy. Thus far, all of

thesedecisions for scaling the weights are made before the

network is programmed on the microcontroller. This process

has been automated for ease of use. The Neural Network

Trainer was modified to automatically scale the weights and

inputs after it trains the network. This is done in Matlab and

an example of the scaling process can be seen below.

2.2. MULTIPLICATION

The Pic18F45J10 microcontroller has an 8-bit by 8-bit

unsigned hardwaremultiplier. Considering that the hardware

multiplier cannot handle floating point values or negative

numbers, a routine was needed to allow fast multiplication

of fractional values. The multiply routine is passed two

sixteen bit numbers, consisting of an eight-bit integer and an

eight bit fraction portion.

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

 Artificial Neural Network Implementation in Microchip PIC 18F45J10 8-Bit Microcontroller

132

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number E3123063514/14©BEIESP

Journal Website: www.ijeat.org

The routine returns a 32-bit product. The result of the

multiplication routine is a 32-bit fixed point result shown in

Figure 1.

Figure 1: Implementation of 16-bit fixed point

multiplication using 8-bit hardware

multiplier. Steps 1-4 are summed with place holders to

give the final product on the

result line. Abbreviations: Integer (I) Fractional (F)

Product (P) Lower-Byte (L) Higher-

Byte (H).

2.3. ACTIVATION FUNCTION

A soft activation function was needed for the neural

network. The most common activation function is tanh and

the definition is shown back in Equation 1. The pure

definition tanh was not a reasonable solution for several

reasons. Specifically, the exponents would be very difficult

to calculate accurately with the limited hardware in a timely

fashion. A second order approximation of tanh was chosen

for its accuracy as well as its simple arithmetic calculations.

Several features were added to the activation function

besides simply calculating a second order approximation of

tanh. One of these features analyses the inputs to the

activation function and converts negative numbers to

positive numbers to make the internal calculations faster and

reduce the number of values that must be stored in the

lookup table. The sign is restored at the end of the activation

function. Another feature is a check to see if the neuron is in

saturation. In other words, make sure the net value is within

a given range. In this case the second order approximation is

skipped and the neuron is put into saturation. These features

of the second order approximation can be seen in better

detail in Figure 2. The routine requires that 30 values be

stored in program memory. This is not simply a lookup table

for tanh because a much more precise value is required. The

tanh equivalent of 25 numbers between zero and four are

stored. These numbers, which are the end points of the

linear approximation, are rounded off to 16-bits of accuracy.

Then a point between each pair from the linear

approximation is stored. These points are the peaks of a

second-order polynomial that crosses at the same points as

the linear approximations. Based on the four most

significant bits that are input into the activation function, a

linear approximation of tangent hyperbolic is selected. The

remaining bits of the number are used in the second-order

polynomial. The coefficients for this polynomial were

previously indexed by the integer value in the first step.The

approximation of tanh is calculated by reading the values of

yA, yB and ∆y from memory and then the first linear

approximation is calculated using yA andyB.

x

xyy
yxy AB

A


−
+=

2

).(
)(1

(1)

The next step is the second-order function that corrects most

of the error that was introduced by the linearization of the

tangent hyperbolic function.

))(()(22

22 xxx
x

y
xy −−




= (2)

Or

22

)2(
)(

x

xxxy
xy



−
= (3)

In order to utilize 8-bit hardware multiplication, the size of

∆x was selected as128. This way the division operation in

both equations can be replaced by the right shift operation.

Calculation of y1 requires one subtraction, one 8-bit

multiplication, one shift right by 7 bits, and one addition.

Calculation of y2 requires one 8-bit subtraction, two 8- bit

multiplications and shift right by 14-bits. Ideally this

activation function would work without any modification,

but when the neurons are operating in the linear region

(when the net values are between -1 and 1) the activation

function is not making full use of the available.

Figure 2: Example of linear approximations (red) and

parabolas between 0 and 4(magenta). Tanh (green) and

the approximation (blue) are also shown on the graph.

Only 4 divisions were used for demonstration purposes.

The activation function is tested in hardware by sending a

set of numbers from -5 to +5 and comparing them to the

output of the tanh function. The difference between the sets

of numbers can be seen in Figure 3.

Figure 3. Error from tanh approximation using 6

divisions from -5 to +5.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-3 Issue-5, June 2014

133

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number E3123063514/14©BEIESP

Journal Website: www.ijeat.org

2.4. MEMORY STRUCTURES

The Microchip PIC 18F45J10 microcontroller was used to

implement the neuralnetwork. The microcontroller has only

one true register that can be used for holding data, passing

data, and ALU calculations. It has 1 Kbyte of ram memory

and when the neural network has 255 .This memory is

divided into four 256 byte banks. Only one of these banks

can be accessed directly without the use of extra addressing

instructions. This one bank has 128 bytes of general purpose

memory and 128 bytes of processor configuration memory.

This general purpose memory is used as global and

temporary variables for calculations. The other three banks

are used for the weights and the individual nodes of the

neural network. The weights are stored as 16-bit numbers,

which consist of an 8-bit integer and an 8-bit fractional part.

Two banks are used to store the high and low byte of each

weight. This allows for 255 weights to be stored. The zero

location is not used for indexing reasons. Figure 13 shows

the memory mapping. As the output of the neural network is

calculated the output of each neuron and the inputs need to

be stored throughout the entire calculation to allow multi-

layer connections. These node values are also 16-bit values.

This poses a problem because there is only one ram bank

left and two banks are needed. This problem is solved by

splitting this bank into two separate banks; the low bank and

high bank hold the low byte and high byte respectively.

Notice this adds an additional limitation to the neural

network size. The network may only have 127 total inputs

and nodes. This limitation will most likely not be the

dominant factor in many cases. Typically the weight

limitation would be met prior to approaching the node limit.

This memory limitation is only relevant to this

microcontroller. This concept could be extended to other

microcontrollers or systems with extended ram. More ram

could easily allow for even larger networks with greater

numbers of neurons and weights. The C version of the

software stores all weights and architecture values in

program memory not in RAM. There simply is not enough

ram for the C version to function if these values are in ram.

 Bank 0 Bank 1 Bank 2 Bank 0

0*00

0*80

0*FF

Figure 4. Memory Allocation Table for Pic18F45J10

III. NEURON BY NEURON COMPUTATION PROCESS

3.1. FORWARD CALCULATIONS

This process of forward calculations is a unique method

compared to most neural network implementations because

it uses the Neuron By Neuron method. This method requires

special modifications due to the fact that assembly language

is used with very limited memory resources. The process is

written so that each neuron is calculated individually in a

series of nested loops; see Figure 14. The number of

calculations for each loop and values for each node are all

stored in two simple arrays in memory. The assembly

language code does not require any modification to change

the network’s architecture. The only change that is required

is to update these two arrays that are loaded into program

memory. These arrays contain the architecture and the

weights of the network and are generated by NNT. The

weights are stored in ROM or off chip and are loaded into

RAM for faster calculations. Finally there are numerous

constants that are configured such as scale values and

saturated neuron values. After the initialization block, the

Main Loop begins. This is an infinite loop that keeps the

network sampling new inputs and then starting the forward

calculations. With the next input sampled the network resets

pointers and index values and enters the Network Loop.

3.2. INDIVIDUAL NEURON CALCULATIONS

The Neuron calculations go through several steps in order to

process the pseudofloating point arithmetic. The first step is

the net value calculation which is shown in Figure 5.

General

Purpose

Memory

Processor

Setup

Memory

Weights

High Bytes

Weights

Low Bytes

High Byte

Network

Nodes

Low Byte

Network

Nodes

A
d

d
re

ss

http://www.ijeat.org/

 Artificial Neural Network Implementation in Microchip PIC 18F45J10 8-Bit Microcontroller

134

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number E3123063514/14©BEIESP

Journal Website: www.ijeat.org

The inputs are multiplied by the corresponding weights and

the result is stored in the 32-bit Net register. This is

essentially a multiply and accumulate register designed for

this particular stage. It is very important to keep all 32 bits

in this stage for adding and subtracting. Without the 32 bits

of precision at this step itwould be very easy for an overflow

to occur during the summing process that would not be

reflected in the final net value.The next stage is to turn the

pseudo floating point number into a fixed pointnumber.

This process can be seen in Figure 6

//Weights

Number of inputs; Number of outputs; (8-Bit)

Number of Weights; (8-bit)

Weight(1), Weight(2), Weight(3)....Weight(N);

Number of Neurons;

//Neuron 1

Neuron Scale, Number of Inputs, Output Node,

Inputs(1-N)

//Neuron 2

Neuron Scale, Number of Inputs, Output Node,

Inputs(1-N)

.

.

.

//Neuron N

Neuron Scale, Number of Inputs, Output Node,

Inputs(1-N)

[Forward Calculations of Neurons]

IV. APPLICATION

In order to demonstrate that the microcontroller neural

network is performingcorrectly several example control

problems were tested. Neural networks have the unique

ability to solve multi-dimensional problems with many

inputs and many outputs, however these types of problems

are not easy to test and verify visually. For this reason the

network was tested mainly with two input and one output

problems in order to plot the output as a function of the

input on a three dimensional surface. This is not the only

type of problem that can be solved, it is just to demonstrate.

A two input and two output system is also shown by

graphing the outputs separately to demonstrate that other

types of networks will work as well.The process is tested

with the microcontroller hardware in the loop. In

otherwords, the sensor data is transmitted via the serial port

from Mat lab to the microcontroller. The microcontroller

then calculates the results and transmits this data via the

serial port back to Matlab. The reason for this simulation is

to isolate the errors in the system to those produced by the

microcontroller calculations. The following examples will

have some or all of the images that are described:

Training Data --- The training data is the data used to train

the neural network.The number of points will vary with the

application.

Ideal Neural Network -- This refers to a neural network

running on a computeror a system using the IEEE floating

point standard. The word ideal refers tomost practical

applications where there is no significant data loss due to

theprecision of the calculations. However, this is still a

neural networkapproximation of the training data and not an

identical representation.

PIC Based Neural Network -- This is the output of the

neural network runningon the PIC hardware. This

approximation will not be identical to the ideal neural

network because of the approximations that are made on the

microcontroller.

Error Surfaces -- The error surfaces are differences

between two of thepreviously shown surfaces. The surfaces

will give a visual description ofdifferences between surfaces

shown on the same scale as the original surface.This

comparison separates the error of using an ideal neural

network and using a neural network with on the PIC.

Error Surfaces Tight -- These surfaces are the same as the

error surfaces except on a much narrower scale to show

what shape the errors have taken. This allows the user to

identify problem areas or to confirm the error is evenly

distributed.

Histograms -- The histograms show the errors of different

surfaces in a numerical manner. This shows the distributions

of the errors, in order to identify the distribution of the

errors. The X-axis is the errors and the Y-axis is the number

of data points within the corresponding error range.

V. CONCLUSION

The software offers the user the option of installing the

network on a Microchip's 18Fxxxx series microcontroller

using custom made neural network software written in

assembly language and optimized for both the

microcontroller and the neural network application. This

version offers a very fast and accurate solution on a very

inexpensive microcontroller. If the user prefers to use a

different platform then the C code generated can be used to

implement the trained network on any C capable platform.

This can be used on other microcontrollers as well as PC

based neural networks. This accomplishment demonstrates

that neural networks can be used to solve problems that in

the past would require custom software programs to be

written for each problem.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-3 Issue-5, June 2014

135

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number E3123063514/14©BEIESP

Journal Website: www.ijeat.org

In other words, if three separate microcontrollers were

needed to control three different processes for a single

project then three unique programs would need to be

written. This solution offers one standard solution for

controlling all three. The user simply needs to train three

separate networks, which is an automated process. Then the

user has the solutions for unique problems without having to

write code for the mathematics.

REFERENCES

[1] A. M. Zin, M. Rukonuzzaman, H. Shaibon, and K. I. Lo, "Neural

network approach of harmonics detection," in Proc. Int. Conf. Energy

Management and Power Delivery EMPD '98, 1998, pp. 467-472.
[2] H. C. Lin, "Dynamic power system harmonic detection using neural

network," in Proc. IEEE Conf. Cybernetics and Intelligent Systems,

2004, pp. 757-762.
[3] S. Osowski, "Neural network for estimation of harmonic components in

a power system," IEE Proceedings C Generation, Transmission and

Distribution, vol. 139, pp. 129-135, 1992.

[4] Z. Jin and B. K. Bose, "Neural-network-based waveform Processing

andDelayless filtering in power electronics and AC drives," Industrial

Electronics, IEEE Transactions on, vol. 51, pp. 981-991, 2004.
[5] M. J. Embrechts and S. Benedek, "Hybrid identification of nuclear

power plant transients with artificial neural networks," Industrial

Electronics, IEEE Transactions on, vol. 51, pp. 686-693, 2004.
[6] L. Hsiung Cheng, "Intelligent Neural Network-Based Fast Power

SystemHarmonic Detection," Industrial Electronics, IEEE Transactions

on, vol. 54, pp. 43-52, 2007.
[7] H. C. Lin, "Intelligent Neural Network-Based Fast Power System

Harmonic Detection," IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS, vol. 54, pp. 43-52, 2007.
[8] W. Qiao and R. G. Harley, "Indirect Adaptive External Neuro-Control

for a Series Capacitive Reactance Compensator Based on a Voltage

Source PWM Converter in Damping Power Oscillations," IEEE
Transactions on Industrial Electronics, vol. 54, pp. 77-85, 2007.

[9] B. Singh, V. Verma, and J. Solanki, "Neural Network-Based

SelectiveCompensation of Current Quality Problems in Distribution
System," IEEE Transactions on Industrial Electronics, vol. 54, pp. 53-

60, 2007.

[10] S. S. Ge and W. Cong, "Adaptive neural control of uncertain MIMO
nonlinear systems," Neural Networks, IEEE Transactions on, vol. 15,

pp. 674-692, 2004.

[11] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou, and P.
A.Ioannou, "High-order neural network structures for identification of

dynamical systems," Neural Networks, IEEE Transactions on, vol. 6,

pp. 422-431, 1995.

Er. Jnana Ranjan Tripathy, Pusruing PhD in Centurion University of

Technology and Management in “ANN Implementation in Embedded
Systems” M.Tech in Computer Science,Berhampur University

B.Tech in Information Technology, BPUT, Currently working in Orissa

Engineering College, Odisha, Worked at Centurion University
previously. Member of IACSIT

Dr.Hrudaya Kumar Tripathy, Ph.D in Computer Science from
Berhampur University. M.Tech in CSE from IIT, Guwahati, B.Tech

(Ceramic Technology) from IIC (CG&CRI), Kolkatta, KIIT University

Chandrasekhpur, Bhubaneswar, Odisha. Published around 20 No.(s) of
research papers in reputedinternational referred journals & IEEE

conferences. Technicalreviewer and member of technical committee of

manyInternational conferences.

Dr. S.S.Nayak, Dean, R & D, Centurion University of Technology &

Management Published around 30 No.(s) of research papers in reputed
international referred journals & IEEE conferences.

http://www.ijeat.org/

