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Abstract—As the race in producing better Genetic Algorithms 

(GAs) to alleviate the notorious premature convergence problems 

heats on, the danger of overly complex solutions, ignoring the 

practicality and feasibility of basic algorithms continues in some 

researches. In this paper, we propose a new variant of GA with 

decent complexity without loosing the search power. Our 

approach is inspired by the monogamous behavior observed in 

nature. The efficacy of MopGA is verified on nine benchmark 

numerical test functions. The results are mostly comparable to 

standard GA and even achieve better overall average reliability 

and speed. 

Index Terms—Genetic algorithm, monogamy, numerical 

function optimization 

I. INTRODUCTION 

Nature sometimes exhibits the formation of enduring 

relationships between mating partners. In modern human 

society, some avian models [1] , fish [2], rodents [3] and 

even lizards [4], pair bonds are integral aspects of their 

social behaviour. These species usually share the same 

mating partners throughout their lifetime – social 

monogamy. On the other hand, computational evolution 

such as the Genetic Algorithm (GA) that derives its 

behaviour from a metaphor of processes in natural evolution 

is however never too close to nature in certain aspects, for 

instance, the negligence of monogamous behaviour. 

Canonical or standard GA (SGA) comprises only panmictic 

population with the simple idea of crossing over among and 

occasional mutation within individuals (i.e. solution strings) 

that are each subjected to selection pressure grounded by 

Charles Darwin’s theory of “survival of the fittest”. GA has 

made many success stories of solving optimization problems 

[5, 6], scheduling problems [7-9], pattern recognition [10], 

etc. that have otherwise been proven NP-hard to be solvable 

within reasonable polynomial timeframe. Nonetheless, again 

and again, GA has fallen short into traps of local optima, 

leading to premature convergence. Compellingly, almost 

over five decades of researches have given rise to plethora 

variants of GAs enumerated briefly as island models [11], 

cellular models [12], hierarchical models [13, 14], and 

heterogeneous population-based [15-17]. The first three 

models represent spatial differentiation approaches where a 

population commonly segmented into sub-populations, grid-

based or hierarchical-based. Restricted interactions are 

permitted across the boundaries usually at specific time 

interval. Meanwhile in heterogeneous population-based 

approach, different groups of interacting individuals exist in 

the form of male-female attractor, predator-prey, or 

competitor-co-operator players.    
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While literature is by far dominated by studies of 

interactive properties among individuals in GA populations 

whether through spatial segregation or group differences, 

few have investigated the essence of interactive roles 

between parents and their offspring, and even lesser to our 

knowledge on the possibilities of monogamous parenting.  

[18] incorporates Baldwin effect that influences an 

individual’s innate fitness. At the same time, offspring’s 

fitness is also under the influence of their parents. However, 

mating partners are not preserved as selection for mating and 

survival is done through elitism and binary tournament 

selection.   

Perhaps, the concept of family introduced in [19-21] has 

better resemblance to monogamous behaviour. In the 

Genetic Invariance Genetic Algorithm or GIGA, a pair of 

parents generates a family that is a set of pairs produced by a 

set of crossover operations on the single pair parents. The 

best pair is then selected from the family to replace the 

parents. However, the main difference contrasting our 

approach to GIGA is that in our approach, no parent 

selection is needed after the initial stage. Furthermore, we 

allow only a pair of children to be generated per generation 

and whenever the children pair-fitness exceeds their 

parents’, they will replace their parents in the next 

generation.  

Our approach has somewhat more similarities to fixed 

parents strategy explored in the work [22]. The authors 

introduce a complementary-parent strategy to initialize and 

reproduce individuals with complementary chromosomes. 

As there exists no selection strategies, mutation, and incest 

prevention, the algorithm is coined the Pseudo Genetic 

Algorithm (PGA). In contrast to our proposed method, PGA 

replaces parents with their offspring at every generation, 

irrespective of their fitness values. The authors admit that 

after many generations of breeding, the average population 

fitness may be kept unimproved. It is merely an elitist-

searching process. We overcome this problem by 

introducing the concept of infidelity commonly found in 

monogamous society. On the other hand, as the race in 

producing better GAs to alleviate the notorious premature 

convergence problems heats on, the danger of overly 

complex solutions, ignoring the practically and feasibility of 

basic algorithms continues in some researches.  In this paper, 

we propose a new variant of GA with decent complexity of 

3O(NK), where N and K being the population size and 

chromosome length, respectively, without loosing the search 

power. Inspired by social monogamy, we present the 

Monogamous Pairs Genetic Algorithm (MopGA). The 

framework allows us to drop a component of conventional 

GA, namely the parent selection and leads to smaller 

footprint. Monogamous pairs reproduce continually 

throughout the entire evolution and will only be replaced by 

their better offspring.  
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In order to maintain higher diversity, we introduce the 

concept of artificial infidelity that is also a common 

phenomenon observed from the natural monogamous 

society. 

The remaining of this paper is organised as follows. 

Section II describes each component of MopGA in greater 

details. The ensuing section (Section III) is devoted to 

experimental setup, test suite description, and results and 

discussion. The paper ends with some concluding remarks in 

Section IV.   

II. MONOGAMOUS PAIRS GA (MOPGA) 

A. Inspiration & Hypothesis 

Though relatively rare phenomenon (e.g. 3-5% from a 

total of 4000 mammalian species [23]), social monogamy is 

rather common at least in most bird species (90% of birds 

are monogamic and usually exhibit biparental care of young 

[23]). The direct and indirect benefits of such behaviour 

have long been studied [1, 2, 4, 24, 25], though surprisingly 

little have been known; most likely due to the complexity of 

these bonds.  

Here, we develop and explore the hypothesis that the 

norms that compose the package of monogamous pairs GA 

is favoured by suppression of parent selections. Finding 

mates can be expensive, especially when it has to be 

implemented in every generation of the evolutionary 

process. Using rank-based selection scheme for instance, 

requires that a population to be first sorted by fitness. Sorting 

could be an expensive burden to the algorithm if the 

population involves is large, especially. Generally, rank 

selection, roulette wheel selection, steady state selection, and 

tournament selection has a complexity of O(N log N), O(N2), 

O(N log N), and O(N), each respectively, where N is the 

population size [26]. MopGA forsake parent selection, and 

instead allowing better offspring to automatically book a slot 

into the next generation. 

Monogamous bonding could also insure mutual defence 

on the pair (more details in section B). 

Furthermore, if every member of the population 

constitutes a point in the search space, and crossover restricts 

the search spaces between the two parents, then repeatedly 

crossing over the same parents until no better child is found 

may be beneficial after all. 

B. Monogamous Pairs 

Unlike conventional GAs, parent pairings are decided 

randomly during initialization stage and stay constant 

throughout the evolutionary process.  The product of 

crossing over and mutation is a new pair of potential parents 

that will replace their parents if they possess better pair-

fitness. This way, free elitism is achieved as better pair 

automatically survives into the next generation. 

As noted, monogamous pair also contributes to pair-

fitness. On the flip side, conventional GAs identify 

individuals with their personal fitness values. In theory, a 

monogamous pairing insures mutual defence on both mates.  

‘Weaker’ individuals can have better chances of survival 

when paired with ‘stronger’ individuals. With such, 

domination of population by strong individuals commonly 

seen in SGA can be avoided. 

Empirically, each mate contributes to the pair-fitness as 

follow: 

fpair = 0.7 fstrong +0.3 fweak  (1) 

Stronger mate, fstrong has higher contribution on the final 

pair-fitness, fpair, compared to weaker mate, fweak. 

C. Infidelity 

An interesting phenomenon observed in monogamous 

society is that in most populations, at least a few offspring 

in each generation is the result of extrapair copulations, i.e. 

matings with partners other than a pair member.  

In MopGA, infidelity automatically takes place when 

crossover fails. Hence, no additional parameter tuning is 

added into the algorithm. During this stage, a random pair is 

selected from the population. Next, a new ‘extramarital’ 

pair is formed by randomly selecting one member from 

each pair. Finally, the extramarital pair replaces the old pair 

in the next generation (despite their pair-fitness 

differences). Elitism is broken this way to make room for 

simplicity and provide chances to accept bad ‘moves’ but 

possibility fruitful output in future generations.  

The positive effect of infidelity has been significantly 

displayed on the empirical results. In the obvious, infidelity 

has helped to promote diversity by spreading information 

between different partners that may be restricted by initial 

monogamous norms. Consequently, this leads to better 

chances of escaping local traps.   

D. MopGA Framework 

MopGA begins by random initialization and pairings of 

individuals in the population pool. After this startup phase, 

each pair undergoes the process of reproduction: crossover 

and mutation. The children pair that has better pair-fitness 

than their parents will replace their parents in the next 

generation.  

The one-cut-point crossover integrated with an 

arithmetical operator derived from convex set theory [27-

29] is adopted. After randomly selecting one cutting point, 

the right parts of the two parents are exchanged and the 

linear combinations at the cut-point genes are calculated to 

generate new offspring. For instance, let two parents be 

v = (v1,v2,…vN ) and w = (w1,w2,…,wN ) . Further, let 

k-th be the cut-point. Finally, the resulting offspring are: 

v ' = (v1,v2,…,v 'k,wk+1,wk+2,…,wN )

w ' = (w1,w2,…,w 'k,vk+1,vk+2,…,vN )
 (2) 

where v 'k = vk +b(wk -vk ),w 'k = lk +b(uk - lk ) , lk and 

uk are the domain of vk, and b is a random value subjected 

to b Î 0,0.1,0.2,…,or1{ } . Note that the new value v’k is 

generated by the discrete random value b  with vk and wk, 

which is likely to have different values in different 

generations. 

Following the same idea, the mutation operator used is 

also derived from convex set theory [27, 29]. This method 

is specially designed to enhance fine-tuning capabilities. 

The mutation operator operates on two randomly selected 

genes on an individual. For example, let 
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v = (v1,v2,…,v i ,v j,vk,…,vN ) represents an individual 

to be mutated, and vi and vk are the randomly selected 

mutation genes. Then the resulting genes are given by: 

v 'i = (1-b)vi +bvk,v 'k = bvi + (1-b)vk  (3) 

Observe that the new genes are now closer stepwise.  

Furthermore, dynamic mutation ranging from [0.1, 0.3] is 

also applied following the function [28]: 

Pm = 0.1+
0.2t

G
 (4) 

where t denotes the current generation and G is the 

maximum generations.    

On the other hand, infidelity occurs whenever crossover 

fails. During this stage, the monogamous pair may find 

random mates from the population. The new pair 

automatically gets promoted into the next generation. Like 

in nature, infidelity plays a role in generating diversity. 

Finally, the evolutionary process terminates when the 

maximum predefined generation has been met. Figure 1 

illustrates the overall workflow of MopGA. 

 
Figure 1. MopGA 

III. EXPERIMENTS AND RESULTS 

This section presents the experiments, empirical results 

and discussions to validate the proposed MopGA 

techniques.  

A. Test suite  

A collection of nine benchmark test functions comprising 

both unimodal and multimodal problems are selected. All 

functions are tested on 30 and 50 dimensions (the symbol d, 

if necessary, will substitute the term “dimensions” in the 

rest of the paper). This section provides short reference and 

justification to the choice of test suite and a summary is 

presented in TABLE 1. All functions have global optimum of 

zero. For practical purposes, acceptance level is set for each 

function at which the algorithm is considered successful in 

finding the target solution. 

The first four functions (sphere, axis parallel hyper-

ellipsoid, rotated hyper-ellipsoid, and sum of different 

power) being unimodal contain only one optimum, whereas 

the other test functions (Rosenbrock’s, Rastrigin’s, 

noncontinuous Rastrigin’s, Griewangk’s and Ackley’s) are 

multimodal optimizations problems, i.e. containing many 

local optima, but only one global optimum.  

Sphere (fsphere) belongs to DeJong’s first test function. It is 

smooth, strongly convex, and symmetric. A variant of this 

is the axis parallel hyper-ellipsoid (faphe) function that is also 

known as weighted sphere model. Next, an extension to faphe 

is the Schwefel’s function 1.2 or the Rotated hyper-ellipsoid 

function (frhe). It is continuous, and convex. The last 

unimodal function appearing in this paper is the sum of 

different power function (fsdp).  

Interestingly, in two dimensions, Rosenbrock’s function 

(frosen) is unimodal but considered multimodal for higher 

ones [30]. Also known as banana function, frosen has global 

optimum that lies inside a long, narrow, parabolic shaped 

flat valley. It is known to be challenging for GAs to solve.  

The Rastrigin’s function (frast) is separable and has many 

suboptimal peaks whose values increase as the distance 

from the global optimum point increases. It is considered 

fairly difficult problem for GAs due to its large search space 

and large number of local minimums with a complexity of 

O(n ln n), where n is the number of parameters.  

Since all the test functions are continuous, we especially 

included a discontinuous function, namely the 

noncontinuous Rastrigin (frastNC) [31]. As opposed to 

continuous functions, discontinuous functions commonly 

display characteristics such as having breaks, holes or 

jumps in the graph.   

Like frosen, interdependencies between variables exist in 

Griewangk’s function (fgrie).  The terms of summation 

produce a parabola with local optima stay above the 

parabola level. The dimensions of search range increase on 

the basis of the product, resulting in the decrease of the 

local minimums. It has a complexity of O(n ln n).  

Finally, the Ackley’s function (fackley) is not separable and 

it appears unimodal at low resolution but the second 

exponential term covers the landscape with many small 

peaks and valleys. It is also a widely used multimodal test 

function.

 

TABLE 1. Summary of numerical function test suite 
No Functions Modal d Optimum Acceptance 

1. Sphere function: 

fsphere(x) = xi
2

i=1

n

å xi Î [-5.12,5.12] 

Unimodal 30 0.0000E+00 1.0000E-50 

50 0.0000E+00 1.0000E-50 

2. Axis parallel hyper-ellipsoid: 

faphe(x) = i.xi
2( )

i=1

n

å xi Î [-5.12,5.12] 

 

Unimodal 30 0.0000E+00 1.0000E-50 

50 0.0000E+00 1.0000E-50 
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No Functions Modal d Optimum Acceptance 

3. Rotated hyper-ellipsoid: 

frhe(x) = x2

j

j=1

i

å
i=1

n

å xi Î [-65.536,65.536] 

 

Unimodal 30 0.0000E+00 1.0000E-50 

50 0.0000E+00 1.0000E-50 

4. Sum of different Powers: 

fsdp(x) = | xi |
i=1

n

å
(i+1)

xi Î [-1,1] 

 

Unimodal 30 0.0000E+00 1.0000E-50 

50 0.0000E+00 1.0000E-50 

5. Rosenbrock’s valley: 

frosen(x) = [100(xi+1 - xi
2 )2 + (1- xi )

2 ]
i=1

n-1

å xi Î [-2.048,2.048] 

 

Unimodal. 

But 
multimodal 

when d > 2 

30 0.0000E+00 1.0000E+2 

50 0.0000E+00 1.0000E+2 

6. Rastrigin’s function: 

frast (x) =10n+ [xi
2 -10cos(2p xi )]

i=1

n

å xi Î [-5.12,5.12] 

 

Multimodal 30 0.0000E+00 1.0000E-50 

50 0.0000E+00 1.0000E-50 

7. Noncontinuous Rastrigin’s function: 

frastNC (x) =10n+ [x2

i=1

n

å -10cos(2p xi )]

where

xi =

xi

round(2xi )

2

ì

í
ï

î
ï

| xi |< 0.5

| xi |³ 0.5

xi Î [-5.12,5.12] 

 

Multimodal 30 0.0000E+00 1.0000E-50 

50 
 

0.0000E+00 
 

1.0000E-50 
 

8. Griewangk’s function: 

fgrie(x) =
1

4000
xi

2 - cos(
xi

i
)

i=1

n

Õ
i=1

n

å +1 xi Î [-300,300] 

 

Multimodal 30 0.0000E+00 1.0000E-50 

50 0.0000E+00 1.0000E-50 

9. Ackley’s function: 

fack (x) = -20exp(-0.2
1

n
xi

2

i=1

n

å )- exp(
1

n
cos(2p xi )

i=1

n

å )+ 20 + e xi Î [-32.768,32.768] 

 

Multimodal 30 0.0000E+00 1.0000E-15 

50 0.0000E+00 1.0000E-15 

B. Experimental Setup 

This section describes the experimental setup to compare 

the efficacy of MopGA against SGA on nine test functions 

with 30 and 50 dimensions each. For fair comparison, all 

common parameters are kept the same for both algorithms 

as shown in TABLE 2.  

Real-coded representation is used to achieve higher 

accuracy and it works well under the mutation and one-

point crossover with arithmetical operator derived from 

convex theory described earlier (II.D). While mutation 

operation is dynamic between the ranges of 0.1 to 0.3, the 

crossover probability has been set constant at 0.85.  

For SGA, binary tournament selection is used. Moreover, 

elitism of 10% of the population size (six in this case) or at 

least one elite individual, whichever is higher, is preserved 

for SGA.  

All algorithms will run for a maximum of 25,000 

generations over 30 independent trials each and their mean 

results are used in comparison.  

Both algorithms are coded in Java under MAC OS X 

version 10.6.8 platform on an Intel Core i5 2.4GHz 

processor with 4GB of RAM. 

C. Performance measures 

For comparison purposes, three performance metrics are 

used are, namely (1) accuracy, (2) speed, and (3) success 

rate.  

Firstly, the best objective function value (Mean Best) on 

the mean of all best objective function values for all 30 

independent trials indicates the accuracy belonging to a 

specific test. The standard deviation (Std dev.) provides a 

cue on the spread of the best objective function values.  

Next, the second main performance measure is speed, 

which is measured by the mean of fitness evaluations 

(Mean FEs) before termination. For instance, if a GA with 

population size of 20, and each generation generating 20 

offspring terminates at the 1000-th generation, then the total 

FEs will be 20,000. In the worst case when the GA never 

finds acceptable solution, this value equals the maximum 

number of fitness evaluations. 

Lastly, the success rate (Success rate) defines the 

percentage of runs where an acceptable solution has been 

found.  For instance, a 0% indicates that the GA never finds 

any acceptable solution. On contrary, a 100% indicates that 

the GA always finds acceptable solutions in all runs. The 

higher the success rate, the more reliable the algorithm is. 
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TABLE 2.  Parameters for MopGA and SGA 

Parameters 
Algorithms 

SGA MopGA  

Crossover probability, Pc 0.85 

Crossover type 
One-point crossover with arithmetical 

operator derived from convex theory 

Mutation probability, Pm [0.1, 0.3] 

Mutation type 
Mutation operation derived from convex 

theory 

Population size, N 6  

Maximum generation, G 25,000 

Representation Real value-coded 

Parent selection 
Binary tournament 

selection 
- 

Elitism 
10% of N or 1, 

whichever is higher 
Free elitism 

D. Accuracy 

The simulation results are summarized in TABLE 3. 

Values in bold indicate best results found between the two 

comparative algorithms.  

MopGA records highest accuracy on 14 out of 18 tests 

(including both 30- and 50- dimension problems) with 9 

wins (frosen , faphe , frhe , fack ,and 50d frast), and 5 even results 

(fsdp , frastNC , and 30d frast), compared to SGA. The standard 

deviation values are also smaller for MopGA, indicating 

that the results are more stable.  

As with the theorem of “no free lunch” [32], any one 

algorithm cannot possibility offer better performance on 

every kind of problem compared to all other algorithms. 

Such case is also observed in our results. SGA is more 

superior in frosen and fgrie. Both functions have the 

reputations of being challenging for most GAs. 

E. Convergence Speed 

At first glance, TABLE 3 reveals that SGA comprises more 

functions with smaller mean FEs, especially on multimodal 

problems, except for fack, while MopGA continues to 

chalked better means FEs on unimodal problems, except for 

fsdp. 

The average mean FEs calculated for all tests however 

indicates that MopGA offers the better overall speed of 

44,514.42 FEs compared to 47,287.78 FEs for SGA.  

F. Reliability 

Returning to TABLE 3, MopGA also offers higher 

percentage of trials to reach acceptable solutions averaged 

over all the test functions. It recorded an average reliability 

of 88.33% while SGA recorded only 87.78%. 

 

 

On a closer inspection, we again observe that SGA 

performs better on frosen and fgrie functions. Meanwhile 

MopGA continues its superiority in fack and 50d frast. Both 

algorithms record similar results (100% reliability) for the 

rest of the tests. 

G. Computation complexity 

One of the major strength of MopGA highlighted in this 

paper is the reduction in computational complexity, yet 

preserving the search ability. Sections D, E, and F justified 

the second half of the claim. In this section, we verify the 

computational complexity of MopGA. 

Let us assume N is the population size and K is the 

chromosome length. Broadly, when considering only the 

major components in a GA, TABLE 4 reveals that the overall 

complexity of SGA is 5O(NK) per generation (previously 

analysed by [22]). In contrast, MopGA has a complexity of 

only 3O(NK) per generation. This is achieved through the 

omission of parent selection and free elitism. During normal 

reproduction, the worst complexity for MopGA is 3O(NK), 

but during infidelity mode, the complexity may drop further 

to 2O(NK) as no crossover or mutation is needed.  

In solving real-world problems, computational cost is 

expensive. An increase of 2O(NK) per generation may 

overwhelm the algorithm overhead. Hence, in view of 

practicality and feasibility, striving for lower computational 

complexity is inevitable. MopGA has clearly made this 

possible without loosing the generality of search power. 

 

TABLE 3. Search comparison between SGA and MopGA on 9 benchmark test functions. 

Function d 

SGA MopGA 

Mean Best Std.dev Mean FEs 
Success 

rate (%) Mean Best Std.dev Mean FEs 
Success 

rate (%) 

fsphere 
30 2.0196E-143 1.0812E-142 35,766.78 100.00 0.0000E+00 0.0000E+00 18,265.20 100.00 

50 1.1076E-79 5.9640E-79 80,583.60 100.00 0.0000E+00 0.0000E+00 39,075.00 100.00 

faphe 
30 1.6948E-139 9.1244E-139 33,189.60 100.00 0.0000E+00 0.0000E+00 21,746.40 100.00 

50 1.2242E-79 6.5136E-79 83,397.18 100.00 0.0000E+00 0.0000E+00 40,121.82 100.00 

frhe 
30 4.7131E-141 2.5370E-140 34,102.38 100.00 0.0000E+00 0.0000E+00 20,225.58 100.00 

50 1.5567E-83 6.9161E-83 75,871.80 100.00 0.0000E+00 0.0000E+00 42,245.58 100.00 

fsdp 
30 0.0000E+00 0.0000E+00 9,720.60 100.00 0.0000E+00 0.0000E+00 23,640.42 100.00 

50 0.0000E+00 0.0000E+00 14,940.18 100.00 0.0000E+00 0.0000E+00 50,455.02 100.00 

frosen 
30 4.1810E+01 2.4066E+01 7,171.38 100.00 6.4105E+01 4.0245E+01 49,598.82 80.00 

50 1.0075E+02 4.6800E+01 92,925.18 50.00 1.4489E+02 4.2745E+01 144,991.38 10.00 

frast 
30 0.0000E+00 0.0000E+00 5,791.80 100.00 0.0000E+00 0.0000E+00 14,916.42 100.00 

50 1.8948E-15 1.0204E-14 14,554.98 96.67 0.0000E+00 0.0000E+00 29,999.82 100.00 

frastNC 30 0.0000E+00 0.0000E+00 5,760.78 100.00 0.0000E+00 0.0000E+00 13,464.00 100.00 
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50 0.0000E+00 0.0000E+00 11,263.38 100.00 0.0000E+00 0.0000E+00 27,361.80 100.00 

fgrie 
30 1.7838E-02 4.1189E-02 66,019.02 80.00 1.1370E-01 1.6429E-01 103,842.60 53.33 

50 2.9893E-02 7.6514E-02 73,081.38 83.33 2.0472E-01 2.3370E-01 106,720.98 46.67 

fack 
30 3.3751E-15 3.6864E-15 65,650.98 63.33 8.8818E-16 0.0000E+00 18,963.78 100.00 

50 1.4033E-14 6.4310E-15 141,388.98 6.67 8.8818E-16 0.0000E+00 35,625.00 100.00 

   Overall average 47,287.78 87.78  Overall average 44,514.42 88.33 

 

TABLE 4. Comparison on complexity 

Components 
Algorithms 

SGA MopGA  

Evaluation O(NK) O(NK) 

Parent selection (binary 
tournament selection) 

O(N) - 

Crossover O(NK) O(NK) 

Mutation O(NK) O(NK) 

Elitism O(N) - 

Infidelity - [O(NK)] 

Total complexity 5O(NK) 3O(NK) 

 

IV. The assertion is later confirmed empirically as shown 

in TABLE 5 and  

FIGURE 2. The results reveal that SGA spends more time in 

processing per generation compared to MopGA on all test 

functions. On eight test functions in particular (fsphere, faphe, 

50d frhe, 50d fgrie, 50d frosen, and 50d fack ), the processing 

mean time per generation for SGA even doubled that of 

MopGA. 

V. FINAL REMARKS 

In accordance with natural social monogamy, we presented 

the monogamous pairs GA. It is not difficult to see that a 

pure monogamous framework could easily loose diversity 

and lead to suboptimal solutions.  Hence, the infidelity 

concept has been incorporated, allowing occasional 

scrambling of information between extra partners. The final 

results are indeed satisfying. 

By omitting parent selection at every generation and 

allowing same pairs (monogamous pairs) to reproduce 

continuously, we have shown that MopGA can reduce the 

algorithm complexity by 2O(NK) per generation. Such a 

reduction could be essential cost saving for real-world 

problem solving. 

 
TABLE 5. Comparison on mean time taken per generation 

Function d 
SGA MopGA 

Mean time  

per generation (s) 

Mean time  

per generation(s) 

fsphere 
30 0.1010 0.0391 

50 0.1846 0.0380 

faphe 
30 0.0872 0.0379 

50 0.1789 0.0387 

frhe 
30 0.1023 0.0627 

50 0.2198 0.1027 

fsdp 30 0.0412 0.0380 

Function d 
SGA MopGA 

Mean time  

per generation (s) 

Mean time  

per generation(s) 

50 0.0644 0.0427 

frosen 
30 0.0702 0.0405 

50 0.1199 0.0449 

frast 
30 0.0431 0.0401 

50 0.0561 0.0463 

frastNC 
30 0.0466 0.0411 

50 0.0609 0.0469 

fgrie 
30 0.0648 0.0446 

50 0.1091 0.0504 

fack 
30 0.0574 0.0433 

50 0.1151 0.0449 

 

 
Figure 2. Comparison on mean time taken per generation for 

SGA and MopGA on nine test functions 

 

At the same time, as depicted in the benchmark tests, 

MopGA is mostly comparable to SGA and even achieves 

better overall average reliability and speed. In terms of 

accuracy, MopGA is superior to SGA in most problems, 

except for frosen and fgrie. Both functions have the reputations 

of being difficult to solve by most GAs. 

Nonetheless, it is noteworthy that the results are 

preliminary in nature, though providing some initial evidence 

of the potential problem solving capabilities of MopGA. 

Further refinement of the approach along with additional 

comparisons with other existing optimization techniques 

would be obligatory in future. 
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