
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-2, Issue-3, December 2012

145

Abstract— Sorting is one of the most basic problems of computer

science and has been discussed continuously since the evolution of

computer science. Several algorithms have been devised and

applied and the work is still unfinished. For the parallel computing

sorting is of same relevance as for sequential and very primitive

problem domain too. Grain size is very important aspect of any

parallel algorithm and is decisive in term of complexity. For the

sorting problems minimum unit for sorting is two elements, since

we apply a swap operation if required, and the two elements are

sorted. This is considered to be the single step operation. In this

paper we will increase primitive unit to four elements and four

elements will be sorted in a single step. By applying this technique

we can improve the performance of many parallel algorithms.

Keywords—Parallel sorting; Bitonic; shear sort; Direct mapping.

I. INTRODUCTION

A. A swap operation is

Swap (Element A, Element B)

The values of A and B are interchanged in this operation.

This is very basic operation of most of the sorting algorithms

whether they are sequential or parallel.

B. Designing direct mapping sorters

For parallel algorithms we are proposing a new kind of

basic sorting operation which does not use swapping. Instead

it uses a direct mapping technique which sorts some fixed

number of elements in a single step. This technique is faster

than swapping because internally it itself uses parallelism and

directly writing the results to memory in O(1) enhances the

performance.
The basic idea to implement this theory comes from DNA

analysis. For finding the parent of X, the DNA sample of X

can be matched from a pool of DNA samples. Each DNA

sample in pool has some identification. There are two

possibilities now, either there is someone with same DNA

pattern as DNA pattern of X or no parent of X is in the pool. If

any pattern is matched we can map the parent of X in a single

step if all DNA patterns have unique ID. Second case is not

considerable for us because we will create a complete DNA

pool and nothing should stand out of this pool.

C. Implementing basic sorters in different algorithms

After designing a fast direct mapping sorter we can use it as

basic unit in different well recognized algorithms. We have

used DMS_4(which is single step 4 integer sorter) in bitonic

sort and Shear sort algorithm later in this paper.

D. Terms used for direct mapping

First thing is a Direct mapping sorter which is a small,

efficient function.

Second thing is pattern.

Manuscript Received on December, 2012.

Pushpendra Kumar,

Priyanka Tyagi,

Smriti Joshi

In any sequence of elements (with respect to sorting), there
are only two possible filaments, A<B and A>=B.

We can represent these two only by 1 and 0.

For example the possible pattern for sequence 1, 7, 3, 5, 5, 6

can be 101010 (last 0 represents comparison between 6 and 1).

We can identify a unique sequence which can be used to

identify each possible combination of a given set of elements

(All the elements should be comparable). Chosen pattern may

vary from designer to designer. It is more or less an

assumption rather than fix technique.

Pattern is used to find unique index to find the solution

sequence in DNA pool.
Third thing is calculating the pattern correction sequence

(parent) for creating the DNA pool. DNA pool is a static pool

and several copies of DNA pool can be distributed. It is

created statically and is a read only data structure.

Fourth thing is a direct mapping function (optional),

which maps pattern to DNA pool. Sometimes it is possible to

directly find index from the patterns to identify correct

sequence from DNA pool.

Fifth term is DNA pool. As in our basic assumption we

create all the correct sequence indices in DNA pool and no

solution should stand out of this pool.
 We can write the steps to create a DMS as following.

In a Direct mapping sorter

 To sort k elements k processors will be required.

 Each processor has a copy of DNA pool to find solution

pattern.

 Each processor can calculate DNA pool index itself using

pattern.

 After calculating the index it will get the value to write in

array from copy of this array using the index stored in

DNA pool.

 All the processors can run in parallel.

II. DESIGNING A DMS

A. Designing the primitive direct mapping sorter for two

integers written in an array two[2]={A,B},(there is copy

of array two[] available with name copy_of _two[2])

Possible correct

cases Pattern index

A<B 1,2 0

A>=B 2,1 1

int DNA[2][2]={2,1,1,2}.
int Two[2]=copy_of_two={x,y}.

//x,y are two integers

DMS_2 (int two[0], int two[1])

{

two[0]=copy_of_two[DNA[B<A][0]].

// for Processor 1

two[1]=copy_of_two[DNA[B<A][1]].

 //for Processor 2

//Both processor can execute in parallel

}

This is definitely much faster code than simple swap since it

Introducing Direct Mapping Sorters For Parallel

Sorting Algorithms

Pushpendra Kumar, Priyanka Tyagi, Smriti Joshi

Introducing Direct Mapping Sorters For Parallel Sorting Algorithms

146

can be executed in parallel. In normal Swap function we need

to execute three steps sequentially.

B. Designing a direct mapping sorter for three integers

There are six combinations possible for 3 elements.

abc, acb, bac, bca, cab, cba.
For these combinations patterns are 110,100,010,101,011,001

respectively.

For these patterns the correct sequenced can be written in

DNA table.

Int DNA[6][3]=

{2,1,0,1,0,2,1,2,0,0,2,1,2,0,1,0,1,2}.

Int three[3]=copy_of_three[3]={x,y,z}.

//x,y and z are integers

DMS_3(int three[0],int three[1],int three[2])

{

Index=(A>B)*4+(C>B)*2+(A>C).
//mapping index

three[1]=copy_of_three[DNA[index][1]].

//for processor 1

three[2]=copy_of_three[DNA[index][2]].

//for processor 2

three[3]=copy_of_three[DNA[index][3]].

//for processor 3

//all three processors can execute in

//Parallel

}

C. Designing a direct mapping sorter for 4 integers

Four elements can be sorted using 24 different patterns. To

represent a pattern of four elements we need 6 bits, so we need

an array containing 26 =64 patterns.

int DNA[64][4]=

{

3,2,1,0,2,3,1,0,0,0,0,0,2,1,3,0,
 3,1,2,0,0,0,0,0,1,3,2,0,1,2,3,0,

 0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,3,

 0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,3,

 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

 3,1,0,2,0,0,0,0,1,3,0,2,0,0,0,0,

 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

 0,0,0,0,0,0,0,0,1,0,3,2,1,0,2,3,

 3,2,0,1,2,3,0,1,0,0,0,0,0,0,0,0,

 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

 0,0,0,0,2,0,3,1,0,0,0,0,2,0,1,3,

 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

 3,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

 0,3,2,1,0,2,3,1,0,0,0,0,0,2,1,3,

 0,3,1,2,0,0,0,0,0,1,3,2,0,1,2,3}.

int four[4]=copy_of_four[4]={a,b,c,d}.

//a,b,c and d are integers

DMS_4(int four[0],int four[1],int four[2],int four[3])

{

Index=(four[1]>four[0])*32+(four[2]>four[0])*16+(four[3]>f

our[0])*8+(four[2]>four[1])*4+(four[3]>four[1])*2+(four[3]>

four[2]).

//the mapping index
four[0]=copy_of_four[DNA[index][0]].

//for processor 1

four[1]=copy_of_four[DNA[index][1]].

//for processor 2

four[2]=copy_of_four[DNA[index][2]].

//for processor 3

four[3]=copy_of_four[DNA[index][4]].

//for processor 3

//all four processors can execute in parallel

}

All the three DMS discussed here can be implemented easily

as subroutines and can be called in any parallel algorithm to

sort a smaller grain of sequence. We can increase the

parallelization using DMS. The mapping technique can be

made even faster using bitwise operations.

III. WORKING OF A DMS

A direct mapping sorter works as shown in Figure 1. A copy

of an input array is kept in shared memory of all the

processors. A copy of DNA pool is kept in each processor’s
local memory. Processor can map sorted sequence of its part

directly from the copy of original array to the original array

and overwrite the sorted values in parallel with other

processors. The copy of the array then can be discarded and

latest copy of this array can be generated. Since there is no

swapping required in direct mapping sorter and all the

execution is kept parallel as much as possible, the number of

processors required will increase considerably.

Figure 1. Arrangement of a direct mapping sorter

IV. IMPLEMENTING DIRECT MAPPING SORTERS

A. Bitonic sorting

Bitonic sorting is a sorting network algorithm developed by

Batcher [1].Bitonic sorting uses the property of being bitonic

of any sequence. Bitonic merge sort [2]is based on repeatedly

merging two bitonic sequences, to form a larger bitonic

sequence. This is a very classic algorithm and is studied

thoroughly. Bitonic algorithm is implemented on several

machines and architectures. We can reduce the number of

steps in this algorithm considerably using DMS_4 (direct

mapping sorter to sort 4 elements in single step). For example
the implementation of bitonic sorts on mesh networks. To sort

16 integers we need a mesh having 16 processors. Each

processer contains a value for its index.

Let the index arrangement of processors of a mesh network be

in the following fashion.

The steps are as following in the sorting process using

DMS_4.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-2, Issue-3, December 2012

147

Using pure bitonic sort we need 10 steps to sort any 16

element sequence but using DMS_4 we can sort it just 7 steps.

There can be several possible index arrangements of a mesh

network. We are using left to right snake like arrangement of a

mesh network. The steps are particular for this arrangement
but we can easily adjust these steps according to type of m

TABLE 1.Comparison of bitonic sort with and without DMS_4

Figure 2 shows the steps involved in sorting 16 integers in 7

steps using bitonic sorting with the help of DMS_4. The time

complexity [4] of bitonic sort algorithm is O(log2n). It requires

log n(log n+1)/2 steps to sort any arbitrary sequence. So the

bitonic sequence takes 10 steps to sort the given sequence and

it only requires 7 steps.After using DMS_4 the sorting will

always require 3 steps lesser than normal bitonic sort. The
graph shows the difference. The graph is plotted on

logarithmic scale.

B. Shear Sort

Shear sort [3] is used to sort k2 elements where we uses k× k

mesh. There are two phases in shear sort as following.

Phase A:

 Do k times

 Sort even numbered lows right to left and even numbered

rows left to right.

 Sort columns top to bottom.
Phase B: Sort rows in alternating sequence as above.

To sort any column or row of size k we need k steps or n1/2

steps if n=k2, where n is the number of input elements. The

overall complexity of shear sort is O(n1/2 log n).To sort 16

element mesh we need 8 steps in shear sort.

Shear sort provides extremely great results but on the cost of

large number of processors required, but a cost optimal result

can be found for this arrangement. Figure 5 elaborates the

steps involved in shear sort for 4×4 mesh. The arrangement of

nodes is same like bitonic sort. This is worst case arrangement

when the entire array is arranged in decreasing order, hence
number of rearrangements will be maximum.

We need only three steps to sort 16 elements using DMS_4

with shear sort.

We can analyze the results more deeply using following table.

Introducing Direct Mapping Sorters For Parallel Sorting Algorithms

148

TABLE 2. Comparison of shear sort with and without DMS_4

V. ANALYSING WITH RESULTS OF DMS ON GIVEN
EXAMPLES

Parallel sorting like bitonic sort have been more recent [5]
subject of research. Bitonic sorting has two major phases in

itself. In first phase any arbitrary sequence is converted into

bitonic sequence and in second phase bitonic sequence is

sorted in log n steps. From the figure 3 we can see that three

steps are reduced for each number of inputs. Although it is not

much significant value for large sequences but produce far

better results for smaller sequences.

Shear sort is a two dimensional sort. According to figure 5

and Table 1, the great impact of DMS_4 is evident. Even for

large inputs we can produce very effective results with the use

of DMS_4. Since DMS_4 can sort four elements in single step

for a small problem like 4*4 mesh we can get results in just
few(three) steps as in figure 4.

Effectiveness of DMS depends on the granularity of

problem and distribution of algorithm.

We created DMS up to DMS_4 which sorts 4 elements in

single step using 4 processors. We can create larger DMS to

solve larger grains of sequence to sort in a single step. Larger

will be the size of DMS it will become easier to get to the

output in lesser steps.

In Terms of cost optimality the DMS implementation may

prove weaker since the number of processor required gets

equal to the number of input elements and cost may increase
considerably, but in terms of time complexity DMS may

perform outstanding. In our examples of bitonic sort we can

easily understand that the number of processors required get

double (for a simple Bitonic sort we need only p=n/2

processors) and only 3 steps in every respective sorting are

reduced. For bitonic sort the results in terms of cost are not

that much impressive.

On the other hand for shear sort the results are encouraging

even in the terms of cost optimality. Even the number of

processors gets double, but the numbers of steps are reduced

by 1/3 of original results. DMS can prove very effective in
multicore [6] and Reconfigurable [7] architectures.

VI. CONCLUSION

The achievement of DMS is to reducing the number of steps

in sorting using a parallel algorithm. Well designed and larger

size DMS may prove even faster, but to design a larger DMS

is difficult job each and every time as the size of input

increases because the size of DNA pool may become

unmanageable. In addition to identify correct sequence to

return unique index is difficult.

The space complexity increases as each processor will keep

a copy of DNA pool and a copy of Input sequence is always

kept in advance for future use. Due to technological
advancements and cheaper hardware the processor and

memory requirements are not of that much significance.

VII. REFERENCES

[1] Kenneth E. Batcher. Sorting Networks and their Applications.volume 32

of AFIPS ’68 (Spring), pages 307–314, New York, NY, USA, 1967.

ACM.

[2] Z. Hong and R. Sedgewick. Notes on merging networks. In Proc. 14th

ACM Symp. on Theory of Computing(STOC).

 [3] D. E. Knuth. The Art of Computer Programming, volume 3. Addison

Wesley, Reading Massachusetts, 1973.

[4] M. S. Paterson. Improved sorting networks with O(logn) depth.

Algorithmica,

[5] D.A. Bader, D.R. Helman, and J. J´aJ´a. Practical Parallel Algorithms

for Personalized Communication an d Integer Sorting. ACM Journal of

Experimental Algorithmics, 1(3), 1996.

[6] Hagen Peters, Ole Schulz-Hildebrandt, Norbert Luttenberger ―A novel

sorting algorithm for many-core architectures based on adaptive bitonic

sort‖.

[7] J. Angermeier, E. Sibirko, R. Wanka, and J. Teich Bitonic Sorting on

Dynamically Reconfigurable Architectures Technical Report CS-2011-

01,December 2011

