
International Journal of Engineering and Advanced Technology (IJEAT) 

ISSN: 2249-8958 (Online), Volume-1 Issue-2, December 2011 

     137 

 

Published By: 

Blue Eyes Intelligence Engineering  

and Sciences Publication (BEIESP)  

© Copyright: All rights reserved. 

Retrieval Number B0141121211/11©BEIESP 

Journal Website: www.ijeat.org 

  

Abstract: Database is not static but rapidly grows in size. These 

issues include how to allocate data, communication of the system, 

the coordination among the individual system, distributed 

transition control and query processing, concurrency control over 

distributed relation, design  of global user interface, design of 

component system in different physical location, integration of  

existing database system security. The system architecture makes 

use of software portioning of the database based on data 

clustering, SQMD (Single Query Multiple Database) architecture, 

a web services interface and virtualization software technologies.  

The system allows uniform access to concurrently distributed 

database, using SQMD architecture. In this Paper explain Design 

Strategies of Distributed Database for SQMD architecture. 

 
Index Terms: SQMD, Global User Interface  

I. INTRODUCTION 

Top-down and bottom up approach are the two major design 

strategies for distributed database design. Although these two 

approaches carry out very different design process, the 

necessity of applying one approach to complement another is 

possible since real applications are likely to be too 

complicated to fit in just one approach. The problems of 

effectively partitioning a huge dataset and of efficiently 

alleviating too much computing for the processing of the 

partitioned data have been critical factor for scalability and 

performance. In today’s data deluge the problems are 

becoming common and will become more common in near 

future. The principle “Make common case fast” (or 

“Amdahl’s law” which is the quantification of the principle) 

can be applied to make the common case faster since the 

impact on making the common case faster may be higher, 

while the principle generally applies for the design of 

computer architecture. 

Our scalable, distributed database system architecture is 

composed of three tiers- a web service client (front-end), a 

web service and message service system (middleware), and 

finally agents and a collection of databases (back-end). To 

achieve scalability and maintain high performance, we have 

 
 

Manuscript published on 30 December 2011. 
* Correspondence Author (s) 

Prof. Shailesh R. Thakare*, Professor, Department of Computer Science & 

Engineering, P.R.Pote(Patil) College of Engg & Mgmt, Amravati 

(Maharastra), India (e-mail: shaileshthakar2003@yahoo.com). 

Dr. C.A. Dhawale, Professor, Department of Computer Science & 

Engineering, P.R.Pote(Patil) College of Engg & Mgmt, Amravati 

(Maharastra), India (e-mail: cadhawale@rediffmail.com). 

Ajay B. Gadicha, Asst. Professor,  Department of Computer Science & 

Engineering, P.R.Pote(Patil) College of Engg & Mgmt, Amravati 

(Maharastra), India (e-mail: ajjugadicha@gmail.com). 

 

© The Authors. Published by Blue Eyes Intelligence Engineering and 

Sciences Publication (BEIESP). This is an open access article under the 

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

 

developed a distributed database system on virtual Private 

servers. The databases are distributed over multiple virtual 

private servers by fragmenting the data using two different 

methods: data clustering and horizontal partitioning to 

increase the molecule shape similarity and to decrease the 

query processing time. The distributed nature of the 

databases is transparent to end-users and thus the end-users 

are unaware of data fragmentation and distribution. The 

middleware hides the details about the data distribution. To 

support efficient queries, we used a single Query Multiple 

Database (SQMD) mechanism which transmits a single 

query that simultaneously operates on multiple databases, 

using a publish/subscribe paradigm. A single query request 

from end-user is disseminated to all the databases via allow 

high performance interaction between users and huge 

database by building a scalable, distributed database system 

using virtualization technology. 

II. DESIGN STRATEGIES & DISTRIBUTED 

DATABASE ARCHITECTURE 

 

 

Figure-1: Top-down Design Process 

 

Design Distributed Database Strategies for 

SQMD Architecture 
Shailesh R. Thakare, C.A. Dhawale, Ajay B.Gadicha 

http://www.ijeat.org/
mailto:shaileshthakar2003@yahoo.com
mailto:cadhawale@rediffmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Design Distributed Database Strategies for SQMD Architecture 

 

     138 

Published By: 

Blue Eyes Intelligence Engineering  

and Sciences Publication (BEIESP)  

© Copyright: All rights reserved. 

Retrieval Number B0141121211/11©BEIESP 

Journal Website: www.ijeat.org 

A. Top Down Approach 

Top-down design process is mostly used in designing system 

from scratch. Figure illustrates the process of top-down 

design. The process starts from a requirement analysis phase 

including analyzing of the company situation, defining 

problems and constraints, defining objectives, and designing 

scope and boundaries. The next two activities are conceptual 

design and view design. Focus on the data requirements, the 

conceptual design deals with entity relationship modeling 

and normalization. It creates the abstract data structure to 

represent the real world items. The view design defines the 

user interfaces. The conceptual schema is a virtual view of all 

databases taken together in a distributed database 

environment. It should cover the entity and relationship 

requirement for all user views. Furthermore, the conceptual 

model should support existing applications as well as future 

applications. The definition of the global conceptual schema 

(GCS) comes from the conceptual design. The next step is 

distribution design. The global conceptual schema and the 

access information collected from the view design activity 

are inputs of this step. By fragmenting and distributing 

entities over the system, this step designs the local conceptual 

schemas. Therefore, this step can be further divided into two 

steps: fragmentation and allocation. Distribution design also 

includes the selection of DBMS software in each site. The 

mapping of the local conceptual schemas to the physical 

storage devices is accomplished through the physical design 

activity.  Throughout the design and development of the 

distributed database system, constant monitoring and 

periodic adjustment and tuning are also critical activities in 

order to achieve successful database implementation and 

suitable user interfaces. 

B. Bottom up Approach 

Bottom-up approach is suitable when the objective of the 

design is to integrate existing database systems. The 

bottom-up design starts from the individual local conceptual 

schemas and the objective of the process is integrating local 

schemas into the global conceptual schema. One of the 

most important aspects of design strategy is to determine how 

to integrate multiple database system together. 

Implementation alternatives are classified according to the 

autonomy, distribution, and heterogeneity of the local 

systems. 

Autonomy indicates the independency of individual DBMS. 

In the autonomous system, the individual DBMS are able to 

perform local operations independently and have no reliance 

on centralized service or control. The consistency of the 

whole system should not be affected by the behavior of the 

individual DBMS. Three possible degrees of autonomy are 

tight integration, semiautonomous system, and total isolation. 

In a system which is tightly integrated, although information 

is stored in multiple databases, users only see a single image 

of the entire system. One of the DBMS controls the 

processing of the user request. The DBMS in 

semiautonomous system can operate separately and they are 

also willing to share their local data. In total isolated systems, 

individual DBMS do not know the existence of other DBMS. 

 The physical distribution of data over multiple sites is 

another characteristic of distributed databases. Distributed 

system can be classified as client/server distribution or 

peer-to-distribution based on how the data are distributed and 

how to manage them. Heterogeneous DDBMS integrate 

multiple independent databases into a single distributed 

database system and provide transparency of the 

heterogeneity. Individual DBMS can implement different 

data model, use different query language and transaction 

management protocols. 

 Moving along the distribution dimension, the client/server 

distribution is introduced when the system is distributed with 

an integrated view providing to users. This implementation 

requires assigning the control of the entire system to one 

DBMS (single server) or several DBMS (multiple servers). 

The server(s) control each user request although the request 

might be serviced by more than one DBMS. The other 

scenario is that the system is fully distributed, but the 

distribution is transparent to the user. Each DBMS provides 

the identical functionality and there is no distinction among 

clients and servers. In distributed system, external schemas 

are defined as being above a global conceptual schema (GCS) 

which describe the logical data structure of the entire system. 

The global conceptual schema provides distribution 

transparency to users. It is the union of local conceptual 

schemas of local database systems which describe the logical 

organization of data at each site. The physical data 

organization on each site in the system is presented by local 

internal schema.  

III. ARCHITECTURE FOR SINGLE QUERY 

MULTIPLE DATABASE (SQMD) MECHANISM 

 

 

Figure-2: shows a broad 3-tier architecture view for our 

scalable distributed database system  

 

 

 

http://www.ijeat.org/


International Journal of Engineering and Advanced Technology (IJEAT) 

ISSN: 2249-8958 (Online), Volume-1 Issue-2, December 2011 

     139 

 

Published By: 

Blue Eyes Intelligence Engineering  

and Sciences Publication (BEIESP)  

© Copyright: All rights reserved. 

Retrieval Number B0141121211/11©BEIESP 

Journal Website: www.ijeat.org 

The scalable, distributed database system architecture is 

composed of three tiers-the web service client (front-end), a 

web service and message service system (middleware), 

agents and a collection of database (back-end). The 

virtualization environments based on open VZ and software 

(with web service SQMD using publish/subscribe 

mechanism, and data clustering program ) architecture 

concentrate on increasing scalability with increased size of 

distributed data, providing high performance service with the 

enhancement of query/response interaction time, and 

improving data locality. Our message and service system,, 

which represents a middleware component, provides a 

mechanism for simultaneously. 

A. Web Service 

A web service is a software platform to build applications 

running on a variety of platforms as services. The 

communication interface for web service is described by 

XML that follows SOAP (simple Object Access Protocol) 

standard. Other heterogeneous systems can interact with the 

web service through a set of descriptive operations using 

SOAP.  Web services we used the open-source Apache Axis 

library which is an implementation of the SOAP 

specification. Also we used WSDL (web service Description 

Language) to describe our web service operations. A web 

service client reads WSDL to determine what functions are 

available for database service one service is query request 

service and the other is reliable service which detects whether 

database servers fail. 

B. Web Service Client (Front-End) 

Web service clients can simultaneously access (or query ) 

the data in several database in a distributed environment 

Query requests from clients are transmitted to the web 

service, disseminated through the message and service 

system to database servers via database agents. The well 

known benefits of the three-tier architecture results in the 

web service clients do not need to know about the individual 

distributed database servers, but rather, send query request to 

a single web service that handles query transfer and response. 

C. Message and Service Middleware System 

For communication service between the web service and 

middleware, and the middleware and database agents, we 

have used Narada Brokering for message and service 

middleware system as overlay built over heterogeneous 

networks to support group communications among 

heterogeneous communities and collaborative applications. 

The Narada Broking from Community Grids Lab (CGL) is 

adapted as a general event brokering middleware, which 

supports publish/subscribe messaging model with a dynamic 

collection of brokers and provides services for TCP, UDP, 

Multicast, SSL, and raw RTP clients. The Narada Brokering 

also provides the capability of the communication through 

firewalls and proxies. It is an open source and can operate 

either in a client-server mode like JMS or in a completely 

distributed peer-to-peer-mode. This paper we use the terms 

“message and service middleware (or system)” and “broker” 

interchangeably. Database Agent 
In Figure 2, the database agent (DBA) is used as a proxy 

for database server (Postgre SQL). The DBA accepts query 

requests from front-end users via middleware, translates the 

requests to be understood by database server sand retrieves 

the front-end- user via message service system (broker) and 

web service. Web service clients interact with the DBA via 

middleware, and then the agent communicates with Postgre 

SQL database server. The agent has responsibility for getting 

responses from the database server and performs any 

necessary concatenations of responses occurred from 

database for the back-end (database server), the agent retains 

communication interfaces (publish/subscribe) and thus can 

offload some computational needs. 

D. Database Server 

A number of data partitions split by data clustering or 

horizontal partitioning method are distributed into Postgre 

SQL database servers. Another benefit of database servers 

based on the three-tier architecture is that they do not concern 

about a large number of heterogeneous web service clients 

but need to only process queries and return results of the 

queries. We used the open source database management 

system Postgre SQL. With such an approach using open 

management system, we can build a sustainable high 

functionality system taking advantage of the latest system, 

we can build a sustainable high functionality system taking 

advantage of the latest system technologies with appropriate 

interface between layers (agents and database host servers) in 

a modular fashion. 

IV. DISTRIBUTED DESIGN ISSUES 

The design of a distributed database introduces the 

following interrelated issues. These issues complicate 

distributed database design. 

• How to partition the database into fragments 

•  How many copies of a fragment should be repliced 

•  How to allocate the fragments and replicas 

A. Fragmentation 

Data fragmentation allows us to fragment relations to 

appropriate units of distribution since usually applications are 

only deal with a subset of a relation. Each fragment can be 

stored at any site across the network. The decomposition of a 

relation enables the concurrent execution of several 

transactions. Data fragmentation information is stored in the 

distributed data catalog for accessing by the transaction 

processor to process user requests. There are three types of 

fragmentation strategy:  Horizontal, Vertical, and Mixed 

fragmentation. 

Horizontal fragmentation divides a table into subsets of 

tuples (rows) based on the database information and 

application information. Each fragment consists of unique 

rows and is stored at a different site. The advantage of 

horizontal fragmentation is that it allows data locality by 

storing the fragments in the sites where they are most 

frequently accessed. Parallel processing is allowed on 

fragments of a relation.  

An example of horizontal fragmentation can be that a bank 

fragments its customer table by location. 

Fragment. For example, a customer table can be divided 

into two fragments with one has 

customer ID, name,  

http://www.ijeat.org/


 

Design Distributed Database Strategies for SQMD Architecture 

 

     140 

Published By: 

Blue Eyes Intelligence Engineering  

and Sciences Publication (BEIESP)  

© Copyright: All rights reserved. 

Retrieval Number B0141121211/11©BEIESP 

Journal Website: www.ijeat.org 

address and another has customer ID and other financial 

information. 

Vertical fragmentation can be achieved using two 

strategies: grouping and splitting. The former creates one 

fragment for each attribute and groups them to construct 

fragments. While the latter uses a top-down approach which 

progressively splits global relationship into fragments.  

Vertical fragmentation is more complex than horizontal 

fragmentation and has been used in both centralized and 

distributed environments. Vertical fragmentation is the 

equivalent of PROJECT statement. It divides a table into 

attribute (column) subsets. Therefore it need define subsets of 

attributes that are commonly jointly accessed in order to 

support efficient accessing and transferring data. Each 

fragment is located at a different site and unique attributes 

except that the key column has to be in every mixed 

fragmentation is the combination of horizontal and vertical 

strategies. A table can be divided into subsets of rows, each 

having a subset of columns. Using the same example, a bank 

can partition its customer table by location and grouped by 

certain attributes. 

All the fragmentation algorithms must satisfy three 

correctness criteria: 

•  Completeness: Fragmentation of a relation is 

complete if and only if each data item in the 

relation appears in at least one fragment. This 

criterion ensures that there is no data loss during 

fragmentation. 

•  Reconstruction: It must be possible to use a 

relational operation to reconstruct the original 

relation to ensure the preservation of functional 

dependencies. 

•  Disjointness : Each data item is found in only one 

fragment to minimize redundancy. Vertical 

fragmentation is the exception to this rule in that 

primary key columns must present in every 

fragment to allow reconstruction. 

B. Replication 

In a distributed database, a relation or a fragment can be 

replicated or copied. Copies of data may be stored 

redundantly in two or more sites to serve specific information 

requirements and enhance data availability. For example, a 

bank can have copies of a customer table fragment stored in 

the database of its branch and also in the headquarter 

database. 

Data replication decision should consider the size of 

database and data usage frequency. A fully replicated 

database stores multiple copies of each fragment at multiple 

sites. While in a partially replicated database, only some 

fragments are replicated. A database is fully redundant if 

each site contains a copy of the entire database. 

Replication has several advantages. It improves the data 

availability and response time. It reduces the cost of 

accessing and transferring data. Transactions can be executed 

parallel using replicas of relation or fragment. However, data 

replication increases the cost of updates since all replicas 

have to be updated to ensure they are all identical. Therefore, 

replication increases the complexity of the concurrency 

control. 

C. Allocation 

Data allocation involves the processing of determining the 

location of the fragments based on the information of the 

database, the types of transactions to be applied to the 

database, the communication network, the storage capability 

of each site, and the design goal of cost, response time and 

data availability. 

V. CONCLUSION 

 Architecture of SQMD performs parallel operations on 

the multiple databases using single query which explores the 

clear intension to designing this strategy, which strategy to 

decide being convenient as per the requirement. 

     

REFERENCES 

1. Kangseak Kin, Rajarshi Guha,Marton E.Pierce,Geoffrey 

C.Fox,Divid J.Wild  Kevin E.Gilbert”SQMD:Architecture for 

Scalable, Distributed Database System built on Virtual Private Ser 

vers”,{Kakim rguha, Marpire, gef, djwild, gilben}@indiana.edu 

2. Dixu  “Distributed Database System Design” Minnesota State 

University Kankato. 

3. Ahmet Uyar, Wenjun Wu, Hasan Bulut, Geoffrey Fox. 

Service-Oriented Architecture for Building a Scalable 

4. Videoconferencing System March 25 2006 to appear in book 

"Service-Oriented Architecture - Concepts & Cases" 

5. published by Institute of Chartered Financial Analysts of India 

(ICFAI) University. 

6. Apache Axis2, http://ws.apache.org/axis2/ 

7. Ballester, P.J., Graham-Richards, W., J. Comp. Chem., 2007, 28, 

1711-1723. 

8. Cassandra project, http://code.google.com/p/the-cassandra-project/ 

9. Chaitanya K. Baru, Gilles Fecteau, Ambuj Goyal, Hui-I Hsiao, 

Anant Jhingran, Sriram Padmanabhan, George P. Copeland, 

10. Walter G. Wilson. DB2 Parallel Edition. IBM System Journal, 

Volume 34, pp 292-322, 1995. 

11. Chembiogrid (Chemical Informatics and Cyberinfrastructure 

Collaboratory), 

12. http://www.chembiogrid.org/wiki/index.php/Main_Page 

13. Ciaccia, P., Patella, M., Zezula, P., Proc. 23rd Intl. Conf. VLDB, 

1997. 

14. Community Grids Lab (CGL), http://communitygrids.iu.edu 

15. Dalby, A., Nourse, J., Hounshell, W., Gushurst, A., Grier, D., 

Leland, B., Laufer, J., J. Chem. Inf. Comput. Sci., 1992, 32, 

 

http://www.ijeat.org/
mailto:gilben%7d@indiana.edu

