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Abstract: Contemporary cryptographic algorithms are resistant 

to the strongest threats to cybersecurity and high-profile cyber-

attacks. In recent times, information security scientists and 

researchers had developed various cryptographic schemes that 

defeated attacks using the most sophisticated (in terms of 

processor speed) classical computer. However, this resistance will 

soon erode with the arrival of quantum computers. In this paper, 

we profiled quantum computers and quantum algorithms based on 

their widely believed threat against currently secure cryptographic 

primitives. We found that Grover’s and Shor’s quantum-based 

algorithms actually pose a threat to the continued security of 

symmetric cryptosystems (e.g. 128-bit AES) and asymmetric 

(public key) cryptosystems (e.g. RSA, Elgamal, elliptic curve Diffie 

Hellman (ECDH), etc.) respectively. We discovered that the source 

of the algorithms’ cryptanalytic power against the current systems, 

stems from the fact that they (Grover and Shor) both equipped 

their respective algorithms with a quantum circuit component that 

can execute the oracle in parallel by applying a single circuit to all 

possible states of an n-qubit input. With this exponential level of 

processing characteristic of quantum computers and quantum-

based algorithms, it is easy for the current cryptosystems to be 

broken since the algorithms can existentially solve the underlying 

mathematical problems such as integer factorization, discrete 

logarithm problem and elliptic curve problem, which formed the 

basis of the security of the affected cryptosystems. Based on this 

realization and as part of our readiness for a post quantum era, we 

explored other mathematical structures (lattices, hashes, codes, 

isogenies, high entropy-based symmetric key resistance, and 

multivariate quadratic problems) whose hardness could surpass 

the cryptanalytic nightmare posed by quantum computers and 

quantum-based algorithms. Our contribution is that, based on the 

findings of this research work, we can confidently assert that all 

hope is not lost for organizations heavily relying on protocols and 

applications like HTTPS, TLS, PGP, Bitcoin, etc., which derived 

their security from the endangered cryptosystems. 
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I. INTRODUCTION 

Contemporary cryptographic algorithms are resistant to the 

strongest threats to cybersecurity and high profile cyber-

attacks. In recent times, information security scientists and 

researchers had developed various cryptographic schemes 

that defeated attacks using the most sophisticated (in terms of 

processor speed) classical computer. However, this resistance 

will soon erode with the arrival of quantum computers. 

Before it is too late, there is the urgent need to start exploring 

ways to develop cryptographic algorithms that will stand 

against the huge computing powers of a quantum computer.  

Quantum computing promises to be a threat to cybersecurity 

in the nearest future as the strongest cryptographic algorithms 

will fall under the processing power of quantum computers. 

Most of the widely used public key cryptographic algorithms 

today depend on the hardness of solving mathematical 

problems such as factoring, discrete logarithm, elliptic curve, 

etc. Schemes such as RSA, Elgamal, Diffie-Hellman key 

exchange, ECDSA, and ECDH, are built from the difficulty 

property of the aforementioned mathematical problems. 

These cryptographic schemes in turn are used as the building 

blocks of higher-level security solutions like SSL, TLS, PGP, 

Bitcoin, HTTPS used by most organizations that have 

embrace the Internet and cloud computing as integral tool in 

achieving the set business objectives. 

There are security proofs mathematically backing up each 

of these schemes’ security strength. Such proofs serve as 

formal mathematical evidence that breaking the security of 

each scheme depends on the difficulty of solving underlying 

mathematical problem. These security proofs provide the 

assurance and necessary confidence in deploying these basic 

security primitives and building blocks for higher level 

security applications used in most digital infrastructure. In 

other words, the security of these digital infrastructures 

depend on the airtight security of the building blocks used in 

such security solution. However strong a cryptographic 

scheme may be in the face of classical computers, with 

respect to difficulty in solving hard mathematical problems 

and, whatever security proof and level of confidence is 

assured by such proof(s), the crypto schemes are bound to 

collapse under a quantum computer enabled cryptanalytic 

attack. A quantum computer can seamlessly solve the so 

called hard mathematical problem in few minutes.  
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The problem we are faced with now is that even though 

quantum computing is still in its theoretical stage of 

realization, quantum computers pose a great threat to future 

cybersecurity. This fear is borne out of the fact that most of 

the number theoretic centred mathematical problems, which 

have been used as the basis for security for the past four 

decades can be easily solved by a quantum computer. For 

example, using Snor’s Algorithm and a variant of Grover’s 

Algorithm, a quantum computer can conveniently solve 

factorization problem and a number of mathematical 

problems based on number theory respectively. It is clear that 

with the power of quantum computers, the security proofs of 

the present day cryptographic schemes become inexpressive 

since the mathematical problems, which underlie their 

security are now solvable. Here, it is established how easy it 

is for a quantum computer to break the security of a 

cryptographic scheme. Therefore, no security proof can be 

adequate in this case since no scheme is secure against a 

quantum computer attack. 

Based on the foregoing, is it important to begin a search for 

new mathematical problems hard enough to beat a quantum 

computer and develop new corresponding cryptographic 

schemes that are resistant to cryptanalysis using quantum 

computers. In this paper, we explore various mathematical 

structures that could point to hard-enough mathematical 

problems that cannot be solved by a quantum computer. 

Interesting structures that are good candidates for a post-

quantum security assurance include lattices, multivariate 

quadratic equations, hashes, etc. Cryptographic systems 

based on the above are secure against both classical and 

quantum-computers enabled cryptanalytic attacks. 

II. MATHEMATICAL BASIS OF SECURITY OF 

FUNCTIONAL CRYPTOSYSTEMS 

Mathematical techniques forms the basis of Cryptography, a 

branch of cryptology concerned with the use of some 

mathematical problems considered intractable or whose 

solution is impractically difficult to determine with 

considerable time and resources. Existing cryptographic 

algorithms are based on particularly hard mathematical 

problems. These algorithms are required to be virtually 

unbreakable to continue to provide security services for 

which they are designed such as confidentiality, integrity, 

availability, and nonrepudiation. The mathematical problems 

considered hard enough to form the basis of the engineering 

of today’s cryptographic systems include integer 

factorization, discrete logarithm, and the elliptic curve 

problems. In this paper, we analyze the intractability of these 

mathematical problems, by classical means and, why and 

how they are surmountable by quantum means.  This will 

enable a clear understanding of the limitation of the current 

cryptographic primitives built from the so-called hard 

problem in the face of quantum computing and emergence of 

quantum algorithms. We explain the hard mathematical 

problems underpinning the security of the current 

cryptographic systems. 

A. Integer Factorization Problem 

Many cryptographic primitives and schemes derive their 

security from the intractability of the integer factorization 

problem. Protocols leveraging the hardness of the hardness of 

this problem includes include but not limited to RSA 

encryption, RSA signature, and the Rabin public-key 

encryption schemes. This section provides an understanding 

of the integer factorization problem while summarizing the 

current knowledge on some integer factorization algorithms. 

Factoring integers into prime factors is an extraordinarily 

difficult problem. It would not be wrong to think that many 

people had made much effort in solving this problem for 

centuries; hence, the chances of an efficient algorithm for 

factoring integers are negligible. This difficulty is good for 

cryptography for cryptosystems as they rely on the difficulty 

of this mathematical problem. Although many researchers 

and mathematicians worldwide have tried unsuccessfully to 

find efficient algorithms that can solve the integer 

factorization problem in polynomial time, there is no reason 

to think that factoring integer efficiently is not possible, but 

because one has yet found a polynomial time classical 

algorithm for factoring integers. Some of the different integer 

factorization algorithms developed for factoring integers, 

include trial division, Fermat’s, and Pollard rho methods.  

However, these methods are the most fundamental methods 

that are easy to understand and implement, but none solves 

this problem in polynomial time. Another non-polynomial 

time, integer factorization method worth mentioning here is 

the quadratic sieve method. This method gave birth to the 

“general number field sieve” algorithm, the fastest integer 

factorization algorithm for very large integers. We define 

integer factorization (prime decomposition) problem as, 

given a positive composite integer k, the problem is to find 

the positive integers p and q for p, q > 1, such that k = p * q. 

Note that we are particularly interested in a case where p and 

q are prime numbers. There is a wide assumption that 

factoring an integer is a hard problem, but to this present day, 

there is no established and published proof of its hardness. 

Despite this lack of proof, with sufficiently large integer, 

there is no efficient classical (non-quantum) algorithm to 

solve factoring problem in polynomial time. The hardness of 

factoring integers is not for all composites, but for composites 

believed to be difficult easily generated. This is important 

for “RSA public-key encryption and the RSA digital 

signature” [8]. It is necessary to determine the degree of 

difficulty in finding the prime factors of large numbers.  The 

time it takes a classical computer to compute prime factors of 

a given integer depends on both the processing power and the 

value of prime factors. As the product increases in size, so the 

numbers we use to check are bigger, and each check takes 

more time on average. It is therefore easy to understand here 

that factoring the product gets much and much harder as we 

add more digits onto the prime number. For this reason, RSA 

is believed to be secure, giving credence to the security 

of RSA public-key encryption and the RSA digital signature 

scheme [9, 10]. Semiprimes, the product of two primes, are 

the most difficult to factor using integer factorization 

methods among the b-bit numbers. The largest integer ever 

factored was an RSA-250 made up of 250 decimal digits 

(829-bits number) in 2020 with the computation time of 

nearly “2700 core-years of computing using Intel Xeon 

Gold 6130 at 2.1 GHz” to implement the General Number 

Field Sieve integer factorization algorithm [11]. Since there 

are no proof for the existence or nonexistence of algorithm 

but we only assume that such algorithm that could efficiently 

factor prime integers does not exist, 
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 we can rightly say that the problem of factoring integer is not 

in class P [13, 14, 15]. However, it is an assumption that this 

problem is a hard problem until date. Hence, the problem to 

be NP though suspected not to be NP-Complete [12]. 

B. Discrete Logarithm Problem 

It is important, first, to understand what discrete logarithm 

is all about before delving into relating to its use in 

cryptography. Put simply, “discrete logarithms are logarithms 

defined with regard to multiplicative cyclic groups”. Now 

given a multiplicative cyclic group, G and its generator, 𝑔, 

then from the definition of cyclic groups and  〈𝑔〉 a cyclic 

subgroup generated by 𝑔, we can have ℎ = 𝑔𝑥  for some x 

where h ∈ G. The value x is called the discrete logarithm 

of h in the group G to the base 𝑔. We can represent this as 

𝑥 = log𝑔 ℎ, which is only determined modulo the order of 𝑔. 

The discrete logarithm problem is therefore the problem of 

finding x given ℎ  and 𝑔 formally defined as:  

Given a group G, a generator 𝑔  of the group and 

h  ∈  〈𝑔〉, find an integer x such that 𝑔𝑥 = ℎ. While it 

easy to compute ℎ = 𝑔𝑥, it is nontrivial to determine 𝑥.  

This gives the discrete logarithm problem an important 

property, a one-way function. Generally, a one-way function 

is a function 𝑓: 𝑋 → 𝑌 for which it is computationally 

feasible to determine 𝑓(𝑥) for all x ∈ X but with y ∈ Y, it is 

difficult to compute x from 𝑓(𝑥) = 𝑦  [13]. The problem 

described above is computationally intractable especially if 

we give adequate attention to the choice of the group, G since 

the hardness of this problem depends on the group. For 

instance, most discrete logarithm-based cryptographic 

algorithms make use of the group of prime integers denoted 

by ℤ𝑝
∗  where p is prime. Even though there no efficient 

classical algorithm is known to solve this problem, Pohlig–

Hellman algorithm can very efficiently solve the discrete 

logarithm problem if 𝑝 − 1  has factors that are small primes. 

For this reason, p is always required to be a “safe prime” 

when using ℤ𝑝
∗   as the basis of discrete logarithm based 

cryptographic algorithm. The safe prime is constituted by 

another large prime number, q such that p = 2q + 1.  There 

are many sophisticated algorithms for solving this problem 

inspired by similar methods for integer factorization. 

However, none of these algorithms runs in polynomial time. 

These include “baby-step giant-step”, “function field sieve”, 

“index calculus”, “Pohlig-Hellman”, and “Pollard’s Rho” 

algorithms. 

C. Elliptic Curves Method 

The equation,  𝒚𝟐 = (𝒙𝟑 + 𝒂 ∗ 𝒙 + 𝒃) 𝐦𝐨𝐝 𝒑  is used to 

represent and elliptic curve which forms the basis of Elliptic 

Curve cryptography. By the nature of the above elliptic curve 

equation, there are obviously the x and y coordinate and 

from 𝒚𝟐, it is possible to have two different values of 𝒚, hence 

the curve’s symmetric characteristic on the X-axis. Operating 

in modulo 𝒑 constraints the 𝒚   values to satisfy the 

membership range of the finite field. However, we are 

interested in those values that have a “perfect square” since 𝒚 

must be integers. Obviously, the set of values of 𝒚 represents 

the number points N, on the curve that are perfect squares, 

where 0 < N < p.  As stated earlier, each x produces a pair of 

𝒚 values, one being a symmetrical image of the other. The 

negative values are not of interest revealing that only N/2 

possible ‘x‘ coordinates are valid points on the curve. This 

gives a finite field whose properties satisfies the finiteness 

requirement of values used in cryptography. This is due to the 

integer calculations and the modulus operation on the curve. 

We consider two important operations on points of an elliptic 

curve that explains the strength of ECC. These operations are 

point addition and point multiplication. Two points on an 

elliptic curve can produce another point on the curve by a 

simple operation called “Point Addition”. For example, 

adding one point P to another point Q leading to a new 

point R entails drawing a line from P to Q to intersect the 

curve at a third point R which symmetrically equals to the 

point P+Q on the curve as illustrated in Figure 1. 

 
Fig. 1. Point Addition on an Elliptic Curve 

Point multiplication is another important operation on an 

elliptic curve as far as cryptography is concerned. It is the 

repeated addition of a point to itself. As shown in Fig. 2, we 

draw a tangent from point P to intersect the curve at the 

second point R and the symmetric point to R is 2P, which is 

the addition of point P to itself resulting in point 

multiplication. Again, to multiply 2P by P, we draw a line 

from 2P to meet at P and it intersects the curve at Q. We then 

take the point Z, which is symmetrical to Q, and is equal to 

3P, and so on.  

 
Fig. 2. Point Multiplication on an Elliptic Curve 

Point multiplication is of great significance because 

given a point R = k*P, where R and P are known, it is 

nontrivial to determine value of k. This is because there no 

provision for subtracting or dividing points in elliptic curve 

mathematics hence 𝑘 = 𝑅
𝑃⁄  cannot be resolved. In addition, 

with repeated additions of points, we only obtain a new point 

on the curve, and there is no way of determining “how” the 

current point on the curve resulted through backtracking since 

the addition operation is irreversible. Significantly, the 

multiplicand, k multiplied with the initial point P yielding 

another point on the curve, cannot be efficiently determine by 

a classical computer.  
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This forms the basis of the security behind any ECC-

based algorithm, a principle referred to as trap door function. 

III. FUNCTIONAL CRYPTOGRAPHIC SYSTEMS  

The security of existing cryptographic systems such as 

Rivest-Shamir-Adleman (RSA), Elgamal, Elliptic Curve 

Digital Signature Algorithm (ECDSA), Elliptic Curve 

Diffie–Hellman Key Exchange (ECDH) and Digital 

Signature Algorithm (DSA) cryptosystems typically depend 

on hardness of mathematical problems including integer 

factorization problem, discrete logarithmic problem, and 

points manipulation on elliptic curves. Classical computers’ 

computational capability is not adequate to break the above-

mentioned cyptos in polynomial time, as they deal with 2-bit 

processing. However, quantum computers can process q-bits 

at a time, a property that renders all the conventional 

cryptographic systems an endangered cryptosystems. It is 

clear that a quantum computer leveraging the quantum 

mechanics properties of superposition and entanglement 

could carry out quite complex computations in a matter of 

hours, which is not possible for classical computers in years. 

Thus, with quantum computers and algorithms, businesses 

and organizations, using the internet as a business component 

stand the risk of insecure transactions because the 

aforementioned schemes are the building blocks of security 

protocols such as Transport Layer Security (TLS), SSL, 

Pretty Good Privacy (PGP), HTTPS, and cryptocurrency used 

by businesses and organization for secure communication as 

mentioned earlier.  It is important to do a review of the 

existing cryptographic systems in order to understand how 

they are bound to crumble under quantum computer and 

quantum algorithm enabled attacks. 

A. Rivest-Shamir-Adleman Algorithm 

Rivest-Shamir-Adleman abbreviated RSA is a public key 

encryption cryptographic system invented by the three-some 

Ronald Rivest, Adi Shamir, and Leonard Adleman in 1978. 

The security of RSA cryptosystem is based on the 

nontriviality in finding two large primes and nontrivially 

factoring the product of the two large prime numbers. The 

security of RSA therefore depends on the difficulty of solving 

the integer factorization problem. 

With RSA, we select two large prime numbers p and q and 

compute N = pq. Then we work out the PHI value as PHI = 

(p-1) (q-1). The attacker can only know the PHI value by 

finding p and q through integer factorization, a nontrivial task 

for classical computers provided there is no common factor 

of p-1 and q-1. The encryption key, e is derived in a way that 

1< e < (p-1)(q-1) and e does not share value with Phi, that is 

e and Phi are not a coprime. The decryption key, d is 

calculated as d = e-1 mod (Phi). The encryption and 

decryption algorithm in RSA are given as: 

Encryption: c = me (mod N) 

Decryption: m = cd (mod N) 

From the above, we can see that the attacker could only 

decrypt the ciphertext, c if he can get access to the decryption 

key, d. He can only know d if knows Phi, which can only be 

determined by factorizing N into p and q. Factorizing a the 

product of two large prime numbers to get the individual 

prime numbers can take a classical computer years to 

accomplish. 

B. Elgamal Algorithm 

In 1984, Taher ElGamal invented a digital signature scheme 

called Elgamal named after him. Elgamal algorithm is one of 

the digital signature algorithms [1]. It is a public key 

cryptographic scheme whose security is based on the 

hardness of discrete logarithm problem (DLP) in a cyclic 

group. The algorithm proceeds in three phases: key 

generation, encryption and decryption phases. Our concern 

here is to consider the parameters in the key generation phase 

and show how difficult it is for a classical computer to 

compromise the cryptosystem. If Bob is to communicate 

securely with Alice, the key generation goes thus: Bob selects 

picks a prime number p, a primitive root, r of p and an integer 

a kept as secret such that 0 ≤ 𝑎 ≤ 𝑝 − 1. He then calculates 

the least nonnegative residue 𝑏 ≡ 𝑟𝑎  𝑚𝑜𝑑 𝑝. The public key 

is now given as the tuple (𝑝, 𝑟, 𝑏). To decrypt the plaintext, an 

adversary needs to know a, which entails taking the discrete 

logarithm of 𝑏  using the primitive root, r. even if the 

adversary has knowledge of r and arguably tires many 

instances of 𝑎  until  𝑟𝑎 ≡  𝑏 𝑚𝑜𝑑 𝑝 , if 𝑝  is a large prime 

number this is very impractical. The ElGamal cryptosystem 

is based on the assumption that while exponentiation is easy 

in modular arithmetic, it is difficult to take (discrete) 

logarithms. Mathematically, we can agree that  𝑎 ≡
log𝑟 𝑏 𝑚𝑜𝑑 𝑝 − 1  is difficult to compute by an adversary 

using a classical computer. 

C. Elliptic Curve Digital Signature Algorithm (ECDSA) 

ECDSA is based on Elliptic Curve Cryptography (ECC). 

ECC is an alternative to RSA, which uses two points on a 

given elliptic curve instead of two large primes, as is the case 

in RSA. ECC derives its strength from the algebraic 

structuring of elliptic curves over finite field, which makes it 

mathematically difficult to subvert ECC encryption and 

decryption keys. Because of ECC’s relatively small key size, 

it is one of the most widely used technique for 

implementation of digital signatures. Bitcoin and Ethereum 

are two cryptocurrencies deploying ECDSA to sign 

transactions. ECC is also been chosen as a standard for 

encryption by most mobile and web applications due to it 

shorter key length. Cryptographically, ECC is based on the 

hardness of discrete logarithm problem. In 1985, Koblitz [2] 

and Miller [3] invented the idea of using elliptic curves to 

build cryptosystems. Elliptic curve-based cryptosystems are 

the elliptic curve versions of discrete logarithm-based 

cryptosystems where the group of points on an elliptic curve 

over a finite field replace the subgroup of prime integers,  ℤ𝑝
∗ . 

The security of the elliptic curve-based schemes is the 

intractability of elliptic curve discrete logarithm problem 

(ECDLP) [4]. ECDSA is the elliptic curve version of the 

Digital Signature Algorithm (DSA) originally proposed by 

Vanstone in 1992 [5] because of the request by NIST for 

proposal for a new “Digital Signature Standard”. 

D. Elliptic Curve Diffie–Hellman Key Exchange 

(ECDH) 

The ECDH is an anonymous key exchange scheme in which 

two parties in a secure communication wish to exchange a 

shared secret over an insecure channel.  
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Each parties must use one of a pair of an elliptic-curve based 

public and private key. ECDH is similar to DHKE (Diffie–

Hellman Key Exchange) algorithm, the only difference being 

in the group used to generate the shared secret. DHKE 

employs a multiplicative cyclic group made up of integers 

whereas ECDH replaces the integers with points on an elliptic 

curve. Unlike DHKE, which uses “modular exponentiation”, 

ECC uses point multiplication making it a better option for 

implementation on constrained devices. We discuss property 

of elliptic curve points as it relates to the shared key 

generation: 

Given two secret numbers, a and b, denoting two private keys 

belonging to two parties engaged in communication over an 

insure channel. Also, given an elliptic curve with generator 

point G, the two parties can exchange the values of their 

public keys and then compute a shared secret, secret = (a * 

G) * b = (b * G) * a as depicted in the following protocol 

which proceeds in two steps:  

Key Generation Step 

1. Party_1 generates a random ECC key pair: 

{Party_1_PrivKey, Party_1_PubKey = 

Party_1_PrivKey * G} 

2. Party_2 generates a random ECC key pair: { 

Party_2_PrivKey, Party_2_PubKey = 

Party_2_PrivKey * G} 

3. Party_1 and Party_2 exchange their public keys 

through the insecure channel (e.g. over Internet) 

Secret Key Calculation Step 

4. Party_1 calculates sharedKey = Party_2_PubKey * 

Party_1_PrivKey 

5. Party_2 calculates sharedKey = Party_1_PubKey * 

Party_2_PrivKey 

6. Now both Party_1 and Party_2 have the same 

sharedKey == Party_2_PubKey * Party_1_PrivKey 

== Party_1_PubKey * Party_2_PrivKey 

As explained in the Elliptic Curve Method section, the point 

multiplication operation is a very important contributor in the 

security of the ECDH Key Exchange protocol. Point 

multiplication is evident in the public key computation 

process where the point, G on the elliptic curve is repeatedly 

added to itself on the generator point G a number of times as 

determined by the randomly selected secret key value, where 

the secret value cannot be determined in polynomial time. 

This difficulty in determining the secret key plays into the 

computation of the shared key, as it is a function of the public 

key. 

E. Digital Signature Algorithm (DSA) 

The DSA is a fundamental algorithm employed in designing 

secure digital signature solutions for data transmission. It is a 

“Federal Information Processing Standard” (FIPS) for digital 

signatures based on modular exponentiation and discrete 

logarithm. A “Digital Signature” is a cryptographic primitive, 

which is fundamental in providing security services such as 

authentication, authorization and nonrepudiation [6]. Digital 

signatures has been deployed in different applications as a 

security mechanism since the protocol is considered tough to 

defend against the active attacks and passive attacks. The 

areas include but not limited to key agreement, contract 

signing, chip level programming, fault tolerant technique, 

assessment systems, identity based authentication, etc. Key 

agreement protocol is used to establish secure communication 

between two parties who need to communicate with each 

other securely. This requires both parties to agree on key 

information secretly over a distributed medium [7]. Security 

services provided by the digital signature schemes are 

authentication, integrity and non-repudiation. A better 

understanding of DSA requires looking at the algorithm as a 

protocol. The algorithm is made up of private/public keys 

generation phases and the signature generation/verification 

phase. 

Private/Public Keys Generation 

1. Select q, a prime number. 

2. Select a second prime number p, (s.t. p-1 mod q = 0)  

3. Select an integer g, such that 1 < g < p, g𝑞 mod 𝑝 =
1  and  g = ℎ((p–1)/q) mod 𝑝 . Where q is g's 

multiplicative order modulo p. 

4. Select an integer x, such that 0 < x < q. 

5. Evaluate y = g𝑥  mod 𝑝. 

6. the tuple {p,q,g,y} gives the public key 

7. the tuple {p,q,g,x} gives the private key 

Signature Generation/Verification 

1. generate the message digest h 

2. select a random number k, such that 0 < k < q. 

3. Compute r = (g𝑘  mod 𝑝) mod 𝑞. If r = 0, select a 

different k. 

4. Compute 𝑖, such that 𝑘 ∗ 𝑖 𝑚𝑜𝑑 𝑞 = 1.  

5. Compute 𝑠 = 𝑖 ∗ (ℎ + 𝑟 ∗ 𝑥) 𝑚𝑜𝑑 𝑞. If s = 0, select 

a different k. 

6. the tuple {r,s} is the digital signature 

7. The sender sends the message, h, and the digital 

signature to the receiver 

 

To verify a signature, the receiver proceeds as follows: 

1. Generate the message digest h, using the same hash 

algorithm. 

2. Compute w, such that s*w mod q = 1, where w is the 

modular multiplicative inverse of s modulo q. 

3. Compute u1 = h*w mod q. 

4. Compute u2 = r*w mod q. 

5. Compute  𝑣 = (((g𝑢1) ∗ (y𝑢2)) mod 𝑝) mod 𝑞. 

6. If v == r, the digital signature is valid. 

Considering the DSA algorithm above, it is nontrivial for a 

signature to be forged or compromise in either active attack 

or passive attack using a classical computer since it is based 

on discrete logarithm. In the key generation phase where the 

private-public pair is generated, it is nontrivial for an attacker 

to determine x given y, in step 5 of the key generation phase, 

using classical computer. This is because it is a difficult and 

impractical to compute the discrete logarithm,  𝑥 ≡
logg 𝑦 mod 𝑝.  The same challenge is encountered in the 

signature generation phase where if the attacker must know 

the value of r and possibly s in other to compromise the digital 

signature, he must be able to obtain the discrete 

logarithm 𝑘 ≡ logg 𝑟 mod 𝑝. The values r and s can only be 

determine if k is known. 

IV. QUANTUM COMPUTERS AND ALGORITHMS 

Having carefully provided explanations on the hard 

mathematical problems including integer factorization, 

discrete logarithm, and elliptic curve problems,  
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we now introduce quantum computers and quantum 

algorithms that have the computational capabilities to break 

any cryptographic system designed or developed using 

cryptographic primitives that are based on any of the above-

mentioned presumably hard mathematical problems.  

In this section, we investigate and present clarification on 

how quantum algorithms and quantum computers are able to 

solve the long perceived hard problems in polynomial time as 

against the widely believed notion that no classical 

algorithms running on classical computers exist that can solve 

the existing presumably hard mathematical problems in the 

acceptable time and space. This paper is basically aimed at 

uncovering the points at which the so-called hard 

mathematical problems crumble in the face of quantum 

computing algorithms so as to provide a direction on our 

search for harder mathematical problems that can withstand 

quantum-based cryptanalysis. The power of quantum 

computers and the capability of quantum algorithms to solve 

hard mathematical problems generally used as the basis of 

design and development of current crypto systems have posed 

serious threats to continued assurance of secure 

communications. Unlike classical computers, which rely on 

transistors with the ability to represent either “high” or “low”, 

“1” or “0” bit of data at a time, quantum computers are 

characterized by the use of quantum bits or qubits. A qubit is 

the basic unit of information processing of a quantum 

computer. With qubits a quantum computer can represent 

both states simultaneously, a phenomenon known as 

superposition (see fig. 3), which enables it to perform 

computations in parallel and thus in a large scale. Another 

interesting property of a quantum computer is entanglement, 

where a change in one qubit drastically affects the other 

irrespective of the distance.  

 

 

 

 

 

 

 

 

 

 

Fig. 3. Qubit superposition phenomenon representing 0 

and 1 simultaneously 

Quantum algorithms leverage the superposition property of 

quantum computers to process information with great speed 

even incomparable to the fastest classical systems. With this 

computing power, the magnitude of information that can be 

represented with, say, 500 qubits would not be possible to 

represent with even more than 2500 classical bits. Because of 

this limitation in terms of low computing power, it would take 

a classical computer a great number of years to factorize a 

2,048-bit number whereas a quantum-based processor could 

do the computation in a couple of minutes. This is why the 

cryptographic systems relying on the hardness of integer 

factorization, discrete logarithm, and elliptic curve problems 

cannot survive quantum computer based attacks. 

V.    THE POWER OF QUANTUM COMPUTERS  

The power of a quantum computer is due to its two important 

properties, superposition and entanglement. The capability of 

qubits to become entangled makes a quantum computer more 

powerful than a classical computer. Superposition allows a 

quantum computer to be able to represent both states of a 

qubit, “1” and “0” at the same time while entanglement 

allows for representation of every possible combination of the 

individual qubits. With large information capable of being 

stored through qubits superposition, some problems can be 

solved exponentially faster. With entanglement, qubits are 

configured such that the probabilities of each qubit are 

affected by all other qubits. This makes it possible for the 

quantum computer to consider all possible arrangement of the 

qubits in parallel whereby one desired candidate result is 

adopted as an intermediate or final result. For instance, a 

quantum computer with two entangled qubits processes four 

possible different combinations of the 2-qubits, i.e. 00, 01, 

10, and 11 are represented at once. With three entangled 

qubits, a quantum computer is able to represent eight possible 

different combination at once, i.e. 000, 001, 010, 011, 100, 

101, 110, and 111. The processing power of a quantum 

computer and hence the amount of information a qubit system 

can represent grow exponentially with each additional qubits 

that are entangled together making it more capable than its 

classical counterpart does. We look deeply into these two 

important quantum phenomena. 

A. Superposition of Qubit States 

There are basically two levels of direct current (DC) voltage. 

Classical computing implements a processed bit using either 

of these two DC voltage levels. When switching between 

these two levels, a forbidden zone must be crossed as fast as 

possible because the switch or change in the electrical voltage 

from one level to another cannot take place instantaneously. 

This means that there is only one possible outcome for the 

measurement of a “bit” of information represented with either 

“low” for “0” or “high” for “1”. A qubit, used in quantum 

computing, has two possible outcomes for its measurement 

having the value “0” and “1”. According to quantum 

mechanics, the basic state of a qubit is derived from the 

superposition of “0” and “1” as contrasted with a classical bit 

[14]. The state of a qubit is represented by a superposition of 

two basis states orthonormal to each other and denoted by 

|0⟩ =
1
0

 and  |1⟩ =
0
1

. These states {|0⟩, |1⟩}  together is 

referred to as “computational basis” spanning the 2-

dimensional vector space of the qubit. For example, a 4-

dimensional linear vector is can represent two qubits in as 

follows:  

|00⟩ =

1
0
0
0

,  |01⟩ =

0
1
0
0

,  |10⟩ =

0
0
1
0

, and  |11⟩ =

0
0
0
1

 

In general, a quantum register with n-qubits can be 

represented in a 2𝑛-dimensional linear vector space [25]. The 

basis states can coherently be superposed resulting in a “pure 

qubit” state. This simply means that given a qubit,  𝜓  and 

probability amplitudes of the qubit’s basis states, 𝛼 and 𝛽, we 

define a linear combination of ket |0⟩ and ket  |1⟩ as: 

|𝜓⟩ =  𝛼|0⟩ +  𝛽|1⟩ 
However, based on Born rule, it is important to note that when 

measuring qubit, 𝜓, the probability of outcome |0⟩ and |1⟩ is 

|𝛼| 2 and |𝛽| 2 respectively.  
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If we consider the absolute squares of the amplitudes as being 

probabilities, then we must constrain  𝛼 and 𝛽, based on the 

“second axiom of probability theory” [16] given by the 

equation: 

|𝛼| 2 + |𝛽| 2 = 1 

Worthy of note, also, is the fact that 𝛼  and 𝛽  do not only 

encode the probabilities of the outcome of a measurement,  

they also hold information about the relative phase between 

𝛼  and  𝛽 , which is responsible for another quantum 

phenomenon known as quantum interference. Now, we can 

visualize the possible states for a 1-qubit using Bloch sphere 

in fig. 4. 

 
Fig. 4. A single qubit visualization using Bloch sphere 

A classical bit can be on either the north or south pole of the 

sphere where |0⟩  and  |1⟩ respectively are located on the 

diagram above with the North-South poles arbitrarily chosen. 

However, a pure qubit state can access any point on the 

surface of the sphere. 

B. Entanglement of Quantum Qubits 

Entanglement, one of the properties of a quantum computer, 

allows more than one qubits to be “entangled” to form 

a single system. A special connection exists between two 

qubits when they are entangled. All qubits within an 

entanglement are described as one unit. Entangled qubits 

share a state of superposition and are hence, dependent of 

each other. Entangling qubits offers a quantum computer 

more processing power. As earlier stated in this paper, every 

addition of a qubit in an entanglement increases the 

processing power of a quantum computer exponentially. 

Applying an operation to one qubit in an entangled state 

affects other entangled qubit(s) even when they are billions 

of miles away from each other. This allows the express higher 

correlation which is not achievable in classical systems. To 

understand this correlation, we explain further using fig. 5. 

 

Fig. 5. Two entangled coins with no means of 

communication produce correlated results. 

For instance, given two entangled coins, 𝑐1 and 𝑐2 separated 

by a great distance and 𝑐2 is flipped and measured. Assuming 

𝑐2 produces the outcome heads then we expect that  𝑐1 would 

produce the heads. In the same manner, if 𝑐2 produced tails 

as the outcome, we automatically expect 𝑐1 to produce tails. 

This can easily suggest that the coins,  𝑐1 and 𝑐2 are capable 

of instantaneous transmission of information between 

themselves with very high speed, see fig. 5. The 

experimented coins, flipped simultaneously with millions of 

miles away, somehow produce the same result with 

practically no classical communication between them. On a 

curious note, what is the basis of this seemingly instantaneous 

transfer of information between the two coins? However it 

may appear, studies have shown that there is no information 

transfer from coin to coin, hence no information is 

transferred. Rather, we understand that the coins shared 

information during entanglement observed in the 

“measurement process [17]. This correlation between 

entangled qubits is the property, which bequeaths speed to 

quantum computers in performing certain computations 

much faster than classical computers, which makes a 

quantum computer a threat to current cryptographic systems.  

VI. POST QUANTUM CRYPTOGRAPHY (PQC) 

Having critically examined the cryptanalytic power of 

quantum computers when it comes to reality, current 

cryptographic systems will lose their ability to provide the 

level of secure protocols and application currently enjoyed by 

businesses and government departments and agencies. The 

current cryptographic systems use the hardness of integer 

factorization, discrete logarithm, and elliptic curve problems 

to provide security. This has led to the cryptographic 

primitives based on the hardness of these problems becoming 

cryptographically irrelevant with quantum computers.  The 

sudden erosion of the hardness of the aforementioned 

mathematical problems is attributed to the threat posed by the 

magnitude of the processing power of a quantum computer. 

The solution to this is to explore more difficult mathematical 

problems than the previous, which the quantum computer 

cannot find solution to in polynomial time. In preparation for  

the post quantum era, researchers in the field of cryptography 

focus attention six areas of advanced mathematics. These 

areas of advanced mathematics gave rise to lattices, 

multivariate, hash, code, super singular elliptic curve isogeny, 

and symmetric key quantum resistance based cryptography. 

In the preceding sections, we will discuss these quantum 

resistant approaches and see if they can efficiently provide 

replacements for the classical approaches found to be 

tractable by a quantum computer. In our related works 

section, we will also review the works of authors who had 

based their research on these areas of post-quantum 

cryptography. 

A. Lattice-based Cryptography 

One of the areas of advanced mathematics that promises to be 

of use in preparing for a post quantum era is lattices. Lattice 

based cryptography a quantum resistant approach aimed at 

increasing the security of future cryptographic systems that 

will help to prevent against quantum computer-based 

cryptanalysis.  
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The confidence that a lattice-based cryptographic system is 

secure against quantum computer and quantum related 

algorithm precipitates on the hardness of the lattice problem. 

Many lattice-based cryptosystems or primitives are secure 

based on the assumption that certain well-investigated 

computational lattice problems are intractable. In this section, 

we analyze the computational complexity of the lattice 

problem to ascertain the suitability of the hard lattice based 

problem for use in designing cryptosystems that can stand 

against a quantum-enabled cryptanalysis.  

A lattice is a set of regularly spaced points arranged infinitely 

on any vector space [18]. It is an “infinite discrete structure” 

generated by a finite set of vectors called basis, represented 

as (𝑏0, … , 𝑏𝑗−1) [19]. More formally, a lattice can be defined 

as a discrete subgroup of ℝ𝑗  or  ℒ(𝑏0, … , 𝑏𝑗−1) . 

Mathematically, Let B =  (𝑏0, … , 𝑏𝑗−1) ∈  ℝ𝑗x𝑘 be the basis 

with linearly independent vector in ℝ𝑗, B will generate the 

lattice given by the set of all integer linear combination of the 

columns in B as follows: 

ℒ(𝐵) = {𝐵x: x ∈  ℤ𝑘} = {∑ 𝑥𝑖𝑏𝑖: 𝑥𝑖 ∈  ℤ 

𝑘

𝑖=1

} 

where B is the basis of the lattice ℒ(𝐵)  and j, k are the 

dimension and rank of the lattice respectively. In figure 6 the 

basis (𝑥1, 𝑥2) is said to be a bad basis because 𝑥1 and 𝑥2 are 

nonorthogonal vectors. However, (𝑏1, 𝑏2)  id a good basis 

since the vectors 𝑏1 and 𝑏2 are orthogonal. Note that the two 

bases (𝑥1, 𝑥2) and (𝑏1, 𝑏2) will generate completely different 

lattices. 

 
Fig. 6. Lattice representation using basis (𝒃𝟏, 𝒃𝟐) and 

(𝒙𝟏, 𝒙𝟐) 

In fig. 6 above,  (𝑏1, 𝑏2) for instance is a vector or a basis of 

the lattice. By continuous addition and subtraction of number 

in the vector in any multiples, the lattice describes a pattern 

that continues to the infinity. The hardness of the lattice 

problem lies in finding points close 0 or any specified point 

in the lattice. For lattices with fewer dimension (e.g. 2 

dimensions), the problems are quite simple, but as the lattice 

scales to higher dimensions problem becomes nontrivial and 

intractable such that both classical approach and quantum 

approach cannot solve the problem in polynomial time. 

Within the diagram above, an example would be that one set 

of points could be the private key and another set of points 

that are further away could be the public key. 

Cryptanalytically, if brute force is used to search of all 

possibilities to derive the private key from the public key, and 

even if quantum computers can speed up this search, it would 

still take a sizable and unrealistic amount of time. Even a 

quantum computer unable to solve hard problems based on 

lattices in polynomial of time. In this paper, we present two 

lattice-based hard problems, which singles out lattice based 

cryptography as a favorite and high profile option for post-

quantum cryptography.  

1. Unique Shortest Vector Problem (uSVP) - This problem 

is defined as follows: Given two positive integers, n and 

m, a parameter 𝜌 ≥ 1, let the basis of a lattice, 𝐿 ⊂ 𝑅𝑚 

that verifies the condition 𝛽2(𝐿)  >  𝜌. 𝛽1(𝐿) 

be (𝑏0, … , 𝑏𝑛−1). The challenge is find a vector v ∈  𝐿 

such that ‖𝑣‖2 = 𝛽1(𝐿) . The problem reduces to 

Shortest Vector Problem (SVP) if 𝜌 = 1. uSVP searches 

for shortest vector in ℒ. 

2. Bounded Distance Decoding (BDD) - This problem is 

defined as follows: Let n and m be positive integers and  

𝛼 > 0 a parameter, and given a basis (𝑏0, … , 𝑏𝑛−1) of a 

lattice,  ⊂ 𝑅𝑚 , and an element t ∈ 𝑅𝑚  that verifies 

dist(𝑡, 𝐿) ≤  𝛽1(𝐿). The challenge is find a vector x ∈  𝐿 

closest to t. 

The uSVP and BDD problems are intractable even with the 

use of quantum computers for lattices of considerably high 

dimension because these problems have strong foundational 

mathematical hardness properties. Given lattice instances that 

truly unpredictable with some range of parameters, the uSVP 

and BDD problems are NP-hard [20]. 

B. Multivariate Cryptography 

A multivariate polynomial is a general case of 

polynomial where there are multiple variables defined as a 

standard polynomial whose coefficients are multiple-variate 

polynomials. A Polynomial is expressed in only one variable 

e.g.   𝑥3 + 3𝑥 − 1 . On the other hand, multi-variate 

polynomials are expressed in more than one variables 

like  𝑥4 − 𝑦2𝑧2 + 𝑧4 . The significance of multivariate 

polynomial in cryptography stems from the fact that a 

multivariate quadratic polynomial map over a finite field is 

capable to create a trapdoor one-way function. Given this 

characteristics, a public key for the cryptosystem can take the 

general form:  Ρ = (𝑝1(𝑤1, … , 𝑤𝑚), … , 𝑝𝑚(𝑤1 , … , 𝑤𝑚)) , 

where 𝑝1  is a quadratic nonlinear polynomial in 𝕨 =
(𝑤1, … , 𝑤𝑚).  Hence, the multivariate quadratic, MQ system  

with m equations in n variables all coefficients in 𝔽𝑞 is given 

by the polynomial notation:  

𝑝𝑘(𝑤1, … , 𝑤𝑚) ∶= ∑ 𝛲𝑖𝑗
𝑘𝑤𝑖𝑤𝑗

𝑖,𝑗

+ ∑ 𝐿𝑖
𝑘𝑤𝑖 + 𝑐𝑘

𝑖

 

In vector notation, we represent the above equation as 

follows: 

𝑝𝑘(𝑤1, … , 𝑤𝑚)  = 𝑤𝑃𝑘𝑤𝑇 + 𝐿𝑘𝑤 + 𝑐𝑘 

with Κ as the “base field” equivalent to the finite field having 

q elements, 𝔽𝑞. Thus, a public key cryptosystem in which a 

multivariate polynomial is the basis of its trapdoor is a 

multivariate-based PKC system. The 

polynomial 𝑝𝑘(𝑤1, … , 𝑤𝑚), a system of quadratic equations 

defined over a finite field has a nontrivial solution. This 

operation is same as inverting a multivariate quadratic map, 

believed to be NP-hard. However, the set of quadratic 

equations required for MPKC must be ideal generated by 

those polynomials because with a random set of quadratic 

equations, a trapdoor is inexistent. The security of a 

multivariate-based cryptosystem is based on the difficulty of 

efficiently obtaining a solution to the multivariate quadratic 

problem defined as: 
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Given a set of 𝑚 quadratic polynomials in 𝑛 variables 𝕨 =
(𝑤1, … , 𝑤𝑚), solve the system:  𝑝1(𝑤) =  …  = 𝑝𝑚(𝑤) =
0. We can formulate the ideal polynomial, IP problem as: 

Given two polynomial maps  𝐹1,  𝐹2:  𝐾𝑛 →  𝐾𝑚 . The 

problem is to look for two linear transformation 𝐿1 and  𝐿2 (if 

they exist) such that:  𝑃(𝑤1, … , 𝑤𝑚)  =  𝐿1  ∘ 𝐹 ∘
𝐿2(𝑤1, ⋯ , 𝑤𝑚) where F is a quadratic map with certain 

structure, which allows the easy inverse computation 𝐹−1. 𝐿1 

and  𝐿2  are full-rank linear maps used to mask the special 

structure, 𝐹. For example, given a plaintext M = (𝑤1 , … , 𝑤𝑚), 

the ciphertext is given by the polynomial evaluation  

𝑃(𝑀) = (𝑝1(𝑤1, … , 𝑤𝑚), … , 𝑝𝑚(𝑤1 , … , 𝑤𝑚)) = (𝑐1, … , 𝑐𝑚) 

To decrypt the ciphertext (𝑐1, … , 𝑐𝑚), we need knowledge of 

the trapdoor to make it feasible to invert the quadratic map to 

compute the plaintext as: (𝑤1, … , 𝑤𝑚) =  𝑃−1(𝑐1, … , 𝑐𝑚).  

C. Hash-based Cryptography 

Hash functions play important role in design and 

development of various security applications that provide 

security services including authentication, message integrity 

and nonrepudiation due to security properties [21]. 

Encryption is a (revertible) two-way function where a 

message, m encrypted into unreadable format using an 

encryption algorithm is decrypted back to a readable format 

using a decryption algorithm. Unlike encryption, hash 

functions are one-way functions and there is no “dehashing” 

function to invert a hashed message due to pre-image 

resistance. Another very important property of hash functions 

is that given an adversary with total freedom to select 

messages, the adversary must not find two messages with the 

same hash value given same hash function and hash key. That 

is to say given two messages, 𝑚1 and 𝑚2, HASH(k, 𝑚1) ≠ 

HASH(k, 𝑚2), where k is the hash key. This property is called 

collision resistance. Thirdly, given a message, 𝑚1, it should 

be impossible for the adversary to obtain another message 𝑚2 

such that the hash of message 𝑚1 is not same as message 𝑚2 

using the same hash key k. This is a stronger property than 

collision resistance known as second pre-image resistance. 

We see application of hash functions in data integrity checks, 

authentication algorithms, digital signatures algorithm, 

rootkit detection, generation of public/private key pair, secure 

socket layer connections, and virus checking. Having 

considered the security properties of hash functions, there is 

no gain saying that hash functions are useful candidates in 

many cryptographic primitives. This gives rise to hash based 

cryptography, a post quantum cryptographic method 

leveraging the irrevertibility of a hash value for design or 

specification of cryptographic cryptosystems. This post 

quantum cryptographic scheme basically, derives from a one-

time signature (OTS) scheme that must use each key pair to 

sign and verify a message only once. Most of the signature 

schemes rely on one-way functions (hash functions) for their 

security. The suitability of a cryptographic hash function in 

post quantum computing security is because it has provable 

security against collision attacks based on the assumption that 

the problem of finding collisions is polynomial-time 

reducible, hence solving P is easier than finding collisions, 

which is unsolvable in polynomial time. This means that the 

problem of finding collisions is in the family of NP-hard 

computationally. 

D. Code-based Cryptography 

Coding theory is an aspect of mathematics, which studies 

different coding properties and analyze their individual 

fitness to use such as transmission of messages over noisy 

channels. Decoding, on the other hand, deals with converting 

these codes to normal messages without errors. Amongst the 

many decoding techniques is used to recover messages 

transmitted over noisy channels syndrome decoding. This 

method of decoding provides a highly efficient way to decode 

a coded information sent over a noisy channel. Syndrome 

decoding is a hard mathematical problem even for quantum 

computers, therefore generally proposed as a computational 

hardness assumption for code based cryptosystem safe 

against quantum cryptanalysis. Code based cryptography 

originated from the works of McEliece [22] in 1978 and 

Niederreiter [23] in 1986. As the current cryptographic 

systems like RSA, DHKE, ECDH, ECDSA, Elgamal, are 

soon becoming quantum vulnerable primitives, code based 

approach to post quantum cryptosystem security is one of the 

mathematical techniques penciled down to provide security 

against quantum computers and algorithms. Code based 

cryptography is premised on the syndrome decoding problem 

described in this paper. We define the problem as follows: 

Given (𝑚, 𝑘, 𝑤) where 𝑘 ≤ 𝑚 and 𝑤 ≤ 𝑚 , a parity check 

matrix 𝐻 ∈ 𝔽𝑞
(𝑚−𝑘)x 𝑚

 and a vector  𝑠 ∈ 𝔽𝑞
𝑚−𝑘  (the 

syndrome), the problem is to recover a vector 𝑥 ∈ 𝔽𝑞
 𝑚  of 

Hamming weight ≤ 𝑤 such that 𝐻𝑥 = 𝑠.  

For random linear codes, for example, where H is a random 

matrix, the problem discussed here is NP-hard hence its 

suitability as the basis of code based cryptography. The 

syndrome, s serves as errors identifier in the received 

codeword and its value indicates the position of the code 

where the error occurs.  

E. Supersingular Elliptic Curve Isogeny Cryptography 

(SECIC) 

Mathematically, elliptic curves isogeny is explained thus:  

Isogeny is a rational map  𝜙: 𝐸 → 𝐸′ between elliptic curves 

which maps the identity to identity. The degree of the isogeny 

𝜙  is its degree as a rational map:  deg 𝜙 =
[𝐾(𝐸): 𝜙∗(𝐾(𝐸′))]  The hard problem on which the 

supersingular elliptic curve isogeny based cryptography 

depends for the desired security against quantum-induced 

vulnerability is finding isogenies between elliptic curves as in 

fig. 7. In terms of computational theory of isogenies, there are 

two kinds of isogenies namely separable and inseparable 

isogenies. Every purely inseparable isogeny has the form 

𝜋(𝑥, 𝑦) = (𝑥𝑞 , 𝑦𝑞)  for some prime power of 𝑞 = 𝑝𝑛  and 

degree of 𝜙 = 𝑞. Every (non-constant) separable isogeny has 

a finite kernel and is determined by its kernel (up to 

isomorphism): 𝐺 = ker 𝜙 ⟷ 𝜙: 𝐸 → 𝐸′ 𝐺⁄  and  deg 𝜙 =
|𝐺|. 

 
Fig. 7: Isogeny between two Elliptic Curves 
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This two isogenies are very different computationally but are 

easy to compute and classify. Separable isogenies are 

essentially all defined by their kernel. As expressed in the 

equation describing 𝐺, there exist a correspondence between 

the finite subgroup 𝐺 = ker 𝜙 with isogeny with finite kernel 

𝜙: 𝐸 → 𝐸′ 𝐺⁄  where deg 𝜙 is expressed in terms of the size 

of the group, |𝐺|.  
We can use Vélu’s formula to compute isogenies as follows: 

Given an elliptic curve 𝐸 and a finite subgroup 𝐺 ⊂ 𝐸, the 

map  

𝜙(𝑃) = (𝜙1(𝑃), 𝜙2(𝑃)) 

where  

𝜙1(𝑃) = 𝑥(𝑃) + ∑ [𝑥(𝑃 + 𝑄) − 𝑥/𝑄)]

𝑄∈𝐺{𝑂𝐸)

 

 

𝜙2(𝑃) = 𝑦(𝑃) + ∑ [𝑦(𝑃 + 𝑄) − 𝑦/𝑄)]

𝑄∈𝐺{𝑂𝐸)

 

 

is a separable isogeny 𝜙: 𝐸 → 𝐸′ with ker 𝜙 = 𝐺. The above 

theory is employed in designing cryptosystems such as SIDH, 

CSIDH and SIKE. These cryptosystems, especially SIKE, 

have shown resistance against quantum attacks because 

breaking the systems is exponential in the size of the input. 

Even in cases where the existence of an isogeny in one 

direction implies the existence of a dual isogeny in the 

opposite direction (the source is same as the target), these 

functions are not inverses of each other: their composition is 

not the identity. This is because an isogeny is not an 

isomorphism. At this point, we make a differentiation 

between ECDH, an ECC based instance and SIDH, a 

supersingular isogeny based instance. Let the sender be A and 

the receiver be B. We first describe ECDH where two parties 

(A and B) wish to communicate with each other. Given a point 

on the elliptic curve, P, A computes [𝑛𝐴]. 𝑃, sends the result 

to B and B computes [𝑛𝐵]. 𝑃 sends the result to A. The key 

exchange is as shown in fig. 8. Thereafter, both A and B 

compute [𝑛𝐴𝑛𝐵]. 𝑃  using their individual 𝑛  values. 

Revealing P and A’s public key, [𝑛𝐴]. 𝑃 does not reveal its 

private key, [𝑛𝐴]. Likewise revealing P and the B’s public, 

 

Fig. 8. ECDH 

 

Fig. 9. SIDH 

key, [𝑛𝐵]. 𝑃 does not reveal its private key, [𝑛𝐵]. Hence even 

if an adversary have access to the points on the elliptic curve 

P, the sender’s public key, [𝑛𝐴]. 𝑃, and the receiver’s public 

key, [𝑛𝐵]. 𝑃 , it is not computationally feasible for him to 

compute [𝑛𝐴𝑛𝐵]. 𝑃. The receiver’s private key is the isogeny 

𝜙𝐵 . The security of ECDH depends on the hardness of 

ECDLP which, however, is broken if the adversary had 

access to a large-scale quantum-computer, a reason good 

enough to introduce isogeny based approach to cryptography. 

Fig. 9 shows the construction of a quantum-safe algorithm 

using isogeny. This uses a more general functions to map 

elliptic curves to elliptic curves. Here, we replace the scalar 

multiplication map, [𝑛𝐴] by the isogenies 𝜙𝐴 and 𝜓𝐴 . Also, 

we replace the scalar, [𝑛𝐵]  by the isogenies 𝜙𝐵  and 𝜓𝐵 . 

Notice that the isogenies 𝜙𝐴 and 𝜙𝐵is equivalent to 𝜓𝐴 and 

𝜓𝐵   respectively but they originate from different curves. The 

sender’s private key is the isogeny 𝜙𝐴   and The sender’s 

private is used to compute 𝜓𝐴 while the receiver’s private key 

is used to compute 𝜓𝐵. 

F. Symmetric Key Quantum Resistance 

Symmetric cryptosystems e.g. DES, Triple DES, and AES 

etc. use a single to both encrypt and decrypt messages. DES 

is a 64-bit block cipher technically using 56-bit key size. Due 

to its relatively short key length, DES is vulnerable to brute 

force attack and hence the cryptosystem has been broken and 

rendered insecure. Because of this shortcoming, AES was 

developed to address DES’s insecurity. The new 

cryptosystem uses 128, 192, or 256 bits key sizes and is 

secure against classical based attacks. With a quantum 

computer having enormous computational ability, a 128-bit 

AES will become insecure. Generally, it is possible to safely 

increase the key length to 256 bits in a symmetric-key-based 

system as required by the information security standard. With 

this, the adversary requires to try not less than half of the key 

instances to compromise the system. Grover’s algorithm 

running on a quantum system would break symmetric key 

systems in polynomial time. This entails searching the key 

space using only √2𝑛 CPU cycles to find the secret key as 

against the Brute force attack, which requires 2𝑛 cycles. This 

vulnerability to Grover’s algorithm is mitigated greatly by 

increasing the key length to 256 bits, which of course is a 

legal AES key size making AES-based schemes to be secure 

post-quantum cryptosystems [24]. However, just doubling 

the key length of AES is not enough to withstand the speed 

of the quantum computer. A key is strong and secure if the 

private key entropy high, i.e. the generator needs to generate 

truly random numbers for the private keys. Entropy measures 

private key’s randomness and is a fundamental component of 

effective encryption. The implication of a low enthropy key 

is that an attacker can compromise the private key even the 

key length increased to 256 bits. Quantum random number 

generators (QRNGs), which uses the unpredictability of 

quantum measurements in generating random numbers have 

also been used recently. To make AES quantum resistant, we 

must use private keys with high entropy in addition to 

increased AES key length. By considering the level of 

security of AES that would be achieved assuming the private 

keys are generated with low-entropy-based random number 

generator, 

 

 

 

 

https://www.doi.org/10.35940/ijeat.E4153.0612523
http://www.ijeat.org/


International Journal of Engineering and Advanced Technology (IJEAT) 

ISSN: 2249-8958 (Online), Volume-12 Issue-5, June 2023 

 

35 

 

Published By: 

Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number:100.1/ijeat.E41530612523 

DOI: 10.35940/ijeat.E4153.0612523 

Journal Website: www.ijeat.org   

 we would appreciate why simply increasing the physical key 

size to 256 bits would not guarantee quantum attack 

resistance for AES, but also using keys from a high entropy 

source. Fig. 10 shows the visualization of the running times 

Grover’s algorithm given n = 256 bits.  

 

Fig. 10. 256-bit AES private key with high entropy 

Resistance against Grover’s Algorithm 

We assume the entropies of the private key ranges between 

32 and 256 bits. This demonstrates the fact that even with the 

key length increased to 256 bits, low entropy values between 

32 and 224 have no impact on time needed by Grover’s 

algorithm to break the system. It is evident that the running 

time of the algorithm went exponential only at the point of 

inflection at about 225 bits entropy. 

VII. QUANTUM COMPUTING BASED 

ALGORITHMS 

In this section, we are only interested in the dynamics of how 

a quantum algorithm is designed having treated the basics of 

quantum computing including superposition of qubits and the 

property of entanglement. A quantum algorithm (e.g. Shor’s 

and Grover’s algorithms) basically consist of two parts; the 

quantum part composed of quantum circuits for performing 

difficult exponentiation operations or complex searching 

operation and a classical component to handle any classical 

operation. Quantum algorithms proceeds in two stages. The 

first stage is the input stage where the algorithm prepare an 

initial quantum state based on the input data, and implement 

a quantum circuit on it. The quantum circuit specifies the 

stepwise manipulation of the data held as qubits. In the 

second stage, the output from the circuit is measured and 

some post-processing operations done using a classical 

computer to get the final output. However, we may require 

more than one iterations of the algorithm to obtain an optimal 

result. Here, we present Shor’s algorithm and Grover’s 

algorithm, the two quantum algorithms that threaten to 

dislodge today’s cryptographic systems. 

A. Shor’s Algorithm  

Shor’s algorithm is one of the quantum algorithms used with 

quantum computers to cryptanalyze the conventional 

cryptographic systems we have mentioned earlier, 

particularly the asymmetric (public key) cryptographic 

systems. In 1994, Peter Shor [25] designed an algorithm that 

showed that factorizing large integers was fundamentally 

possible using a quantum computer. Modern asymmetric 

cryptography such as RSA, ECDH, Elgamal, etc. are 

vulnerable to quantum based attack with Shor’s algorithm. 

For example, let us find the prime factors of 255 using Shor’s 

algorithm. To do this, a 8-qubit register is needed (255 = 

11111111). Shor’s algorithm defines parallel computations 

for all values in the range 0 to 255 in a single computational 

cycle. In the algorithm, n is set to 255, a random number is 

selected such that 1< 𝑥 < 𝑛−1. The selected number, e.g. x = 

2 is raised to the powers of the 8-qubit register, in this case 

20 , 21 ,…, 2254 , 2255 . In each case, the algorithm 

computes 𝑓(𝑞) = 𝑥𝑞 mod 𝑛, where q is a state of the qubit 

register. We present a partial evaluation of this in Table I. 

Table I: Two 8-Qubit Registers with values q and 

Remainders from (𝑞) 

 

Notice the interesting recurring pattern in the R register. This 

leads to finding the smallest positive integer, 𝑟 that 

satisfies 𝑥𝑟 ≡ 1 mod 𝑁 , called the period of the 

function,   𝑓(𝑞) = 𝑥𝑞 mod 𝑛 . Hence, the period of the 

function is 𝑟 = 8, which is then used to calculate a possible 

factor, P using 𝑃 = 𝑥𝑟/2 − 1. Therefore, a possible factor of 

255 is  𝑃 = 28/2 − 1 = 15. The computation is repeated with 

different 𝑟 values if the result, P is not a prime number. The 

generation of the period is very important to Shor’s quantum 

algorithm and relies on the superposition property of the 

quantum computer. Shor’s algorithm is made up of two parts, 

a classical part to carry out some post-processing that need a 

classical computer and a quantum subroutine part. Fig. 11 

shows the quantum subroutine for a variant of Shor’s 

algorithm for factoring integers. The most tasking job in the 

circuit is the quantum transform executed by the sequence of 

gates, U that performs the modular exponentiation modulo N 

i.e. ( 𝑓(𝑞) = 𝑥𝑞 mod 𝑛), where N is the number whose prime 

factor is computed. The leftmost boxes, H are the Hadamard 

gates used to create a superposition of the qubits states. The 

box labelled 𝑄𝐹𝑇−1 is the controlled rotation gate used in 

conjunction with the Hadamard gate to perform Fast Fourier 

Transform. After transformations are performed, the output is 

measured yielding an approximation to the period, r. 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Quantum Circuit for Shor’s Algorithm 

The heart of Shor’s quantum algorithm is the Period-Finding 

subroutine, which the output is use subsequently in 

computing the possible factors. 
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B. Grover’s Algorithm 

Glover’s algorithm is another quantum computing algorithm 

devised by Lov Glover in 1996 [26]. Grover’s algorithm is a 

search algorithm that can search an unsorted database with 

quadratic efficiency. In the problem of searching through a 

database for a particular entry, let us as assume that we have 

N items in an unstructured database X, and it is desirous to 

determine if item x is present in X. This will take a classical 

search algorithm about N operations to complete the task. 

Nevertheless, Grover’s algorithm running on a quantum 

computer can complete the same task in approximately the 

square root of N operations, (√N). This means that given an 

unsorted database consisting of 10,000 records, to find a 

single record based on a query will take a classical algorithm 

10,000 operations to determine whether the required record 

exists in the database or not whereas Grover’s algorithm uses 

only 100 operations to get the task done. A mathematical 

formulation of the above problem will offer more 

understanding of Grover’s algorithm. Given search function 

f, an n-bit input, x and 0 or 1 as output, we represent the 

search function as f(x) =1 for the case where x is found 

otherwise f(x) = 0. We can relate this to the cryptanalysis of 

AES in the CPA model.  

Given a known plaintext-ciphertext pair such that c=AES(k, 

m), where m is a known message and k is unknown 

encryption-decryption key, we can define a function f that 

decrypts c with all possible combination of the 128-bits of the 

AES key and determine the key, k which gives the massage-

ciphertext mapping. The function outputs 1 if the decryption 

of the ciphertext produces a message that matches the known 

plaintext, and indication that the key has been successfully 

cryptanalyzed. As earlier pointed out, Grover’s algorithm 

requires √2128 i.e. 264 operations to break a 128-bits AES, a 

very trivial task for the algorithm running on a quantum 

computer hence the proposal to increase the key length to 256 

with high entropy for the source of the randomness of the key. 

Technically, Grover’s algorithm use two quantum circuits, 

one circuit implements the function f, called the Oracle while 

the other is the diffusion operator. Grover’s algorithm 

leverages the superposition property of a quantum computer 

to apply a single circuit to all possible states of the 128-bits 

of AES simultaneously. The Grover’s diffusion operator flips 

the number around the mean such that the probability 

amplitudes is shifted causing a slight increase in probability 

to measure the correct element and decrease in the probability 

of measuring the wrong element.  Fig. 12 shows a 64-qubit 

circuit for breaking a 128-bits AES crypto with Grover’s 

algorithm using a phase oracle. 

 

Fig. 12: A Quantum Circuit Implementing Grover's 

Algorithm for 128-bits AES Cryptanalysis following the 

implementation of Figgatt et al [27].  

The boxes marked H represent a single qubit Hadamard gates, 

the Z marked boxes are the Pauli Z gates while the X boxes 

are the CNOT gates. Other applications of Grover's algorithm 

include estimation of the mean and median of a set of 

numbers and solving the collision problems. 

VIII. DISCUSSION 

Even though there is still a number of years before the 

actualization of quantum computing, it a worth idea to 

consider what will happen in the post-quantum era. There is 

no gainsaying that the enormous computing capability of a 

quantum computer will render the current cryptographic 

systems insecure. We have objectively looked at the claim 

that RSA, Elgamal, elliptic curve Diffie Hellman (ECDH), 

ECDSA, etc. will crumble under cryptanalytic attack 

involving quantum algorithms running on quantum 

computers. We found that all present cryptographic systems 

derived their security from the assumption of hardness of 

mathematical problems including integer factorization, 

discrete logarithm problem, and elliptic curve discrete 

logarithm problem. Based on this, we also found why and 

how these assumptions (where valid for classical computers 

and algorithms) are invalid when quantum computers and 

algorithms are involved. A quantum computer uses “qubit” as 

its basic unit of information processing as opposed to a 

classical computer. Hence, a quantum computer by its 

superposition and entanglement properties can perform 

several parallel computations in the same time a classical 

computer is processing a single bit of data. The importance of 

current cryptosystems as building blocks of very many 

higher-level security solutions, such as SSL, TLS, HTTPS, 

PGP, etc., led us to evidently, investigate the quantum 

computer’s ability to render these solutions insecure because 

the security of the cryptographic primitives directly 

determine the security of the security solution which forms 

the bedrock of most organizations today. This finding enabled 

us to appreciate the enormity of threats posed by quantum 

computers and quantum-based algorithms such as Shor’s 

algorithm that is capable of cryptanalyzing all present public 

key cryptographic systems and Grover’s algorithm capable of 

breaking 128-bit-AES. Instead of just accepting solutions to 

this impending cryptographic doom, we set out to study 

advance mathematical problems that could form good 

security materials against quantum computing cryptanalytic 

power. This work confirmed that under coding theory, 

syndrome decoding is a hard enough mathematical problem 

that can defeat quantum-based cryptanalysis. Others are 

lattice-based mathematical problems, supersingular elliptic 

curve isogeny-based problem, multivariate problem, hash-

based problem (from the assumption that given f(x) = y, it is 

both theoretically and computationally infeasible to compute 

x given y) and symmetric key quantum resistance (which 

enables AES to be quantum resistant by increasing key length 

from 128 to 258 with high entropy). We found that these 

mathematical problems would provide the level of security 

desired to provide continued security of applications and 

protocols, hence migration to post-quantum cryptographic 

era will be seamless. 
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IX. CONCLUSION 

Grover’s algorithm, running on a quantum computer, 

presents a threat to existing symmetric cryptographic systems 

especially AES using 128-bit key length. In addition, Shor’s 

algorithm is a threat to public key cryptographic systems, e.g. 

RSA, ECDH, ECDSA, Elgamal, etc. For the AES 

cryptographic system to be post quantum compliant, a high 

entropy source for the randomness of the private key in 

addition to doubling the key length from 128 bits to 256 bits 

is required. However, based on this study, there is no remedy 

for the public key cryptosystems’ weakness against quantum-

enabled computers and algorithms. Completely different and 

more advanced mathematical problems are recommended by 

researchers to form the basis of the security of cryptosystems 

resistant to the impending cryptanalytic catastrophe. Even 

though attempts would be made in the future to compromise 

post quantum algorithms designed from these advanced 

mathematical problems, it will be difficult for non-experts in 

the field to understand the very complex manoeuvres of such 

hard problems. 
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