
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-11 Issue-2, December 2021

 29

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B32671211221
DOI: 10.35940/ijeat.B3267.1211221
Journal Website: www.ijeat.org

Abstract: Reinforcement learning is an artificial intelligence
paradigm that enables intelligent agents to accrue environmental
incentives to get superior results. It is concerned with sequential
decision-making problems which offer limited
feedback. Reinforcement learning has roots in cybernetics and
research in statistics, psychology, neurology, and computer
science. It has piqued the interest of the machine learning and
artificial intelligence groups in the last five to ten years. It
promises that it allows you to train agents using rewards and
penalties without explaining how the task will be completed. The
RL issue may be described as an agent that must make decisions in
a given environment to maximize a specified concept of
cumulative rewards. The learner is not taught which actions to
perform but must experiment to determine which acts provide the
greatest reward. Thus, the learner has to actively choose between
exploring its environment or exploiting it based on its knowledge.
The exploration-exploitation paradox is one of the most common
issues encountered while dealing with Reinforcement Learning
algorithms. Deep reinforcement learning is the combination of
reinforcement learning (RL) and deep learning. We describe how
to utilize several deep reinforcement learning (RL) algorithms for
managing a Cartpole system used to represent episodic
environments and Stock Market Trading, which is used to
describe continuous environments in this study. We explain and
demonstrate the effects of different RL ideas such as Deep Q
Networks (DQN), Double DQN, and Dueling DQN on learning
performance. We also look at the fundamental distinctions
between episodic and continuous activities and how the
exploration-exploitation issue is addressed in their context.

Keywords: Reinforcement Learning, Episodic Task, Continuous
Task, Exploration-Exploitation Problem

I. INTRODUCTION

Reinforcement learning (RL) is the process of learning

through the interaction of the agents with their environment.

Manuscript received on November 16, 2021.
Revised Manuscript received on November 19, 2021.
Manuscript published on December 30, 2021.
* Correspondence Author

Vedang Naik*, Department of Computer Engineering, Terna
Engineering College, Navi-Mumbai, India. Email:
vedangnaik0812@gmail.com

Rohit Sahoo, Department of Computer Engineering, Terna Engineering
College, Navi-Mumbai, India. Email: rohitsahoo741@gmail.com
 Sameer Mahajan, College of Engineering, Penn State University, Paoli,
PA, USA. Email: sam7736@psu.edu

Saurabh Singh, Department of Computer Engineering, Terna
Engineering College, Navi-Mumbai, India. Email: srbhsingh39@gmail.com

Dr. Shaveta Malik, Associate Professor, Department of Computer
Engineering, Terna Engineering College, Navi-Mumbai, India. Email:
shavetamalik687@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

An RL agent learns from the implications of its actions
rather than being directed. It chooses its actions based on
previous experiences (Exploration) and potential future paths
(Exploitation), effectively hit and miss learning. The RL
agent is given a numerical reward based on the success of an
action's result, and it attempts to learn to choose actions that
maximize the accrued reward over time.

Deep RL is a technique that blends artificial neural
networks with a reinforcement learning base so that software
agents can learn how to achieve their objectives.

Deep reinforcement learning (deep RL) techniques are
obtained when deep neural networks are used to approximate
one or more of the following reinforcement learning
components: value function, 𝑣̂(𝑠, 𝜃) , which is a
measurement of how good each state, or state-action
combination, is at predicting the likely, cumulative,
discounted, future reward. policy 𝜋(𝑎|𝑠; 𝜃) , which is the
agent's behavior, i.e., a mapping from states to actions a and
model (state transition function and reward function).

 The weights in deep neural networks are the parameters θ

in this case; deep learning's capacity enables DRL agents to
grow to settings with high-dimensional state and action
spaces, overcoming the limitations of conventional RL,
which is restricted to relatively low-dimensional issues [1]. In
increasingly more complicated, non-stationary settings, deep
reinforcement learning agents must communicate,
understand, collaborate, synchronize, and contend with other
learning agents [2].

The ideal policy selects a "greedy" action that maximizes
the value function at each state if the agent knows the proper
optimal value function, including the correct estimation of
environmental dynamics. If the assessment and prediction are
reasonably accurate, a good policy chooses a greedy action
known as exploitation.

However, the agent is not aware of the precise optimal
value function during the trial-and-error phase. Furthermore,
when the environment fluctuates, the value function derived
from previous experiences will be suboptimal.

To determine the ideal value function, the agent must
perform trial actions, which are not preferable in terms of the
present value function; this is referred to as exploration. The
below Fig. 1 shows the schema of Deep Reinforcement
Learning.

Exploration-Exploitation Problem in
Policy-Based Deep Reinforcement Learning
for Episodic and Continuous Environments

Vedang Naik, Rohit Sahoo, Sameer Mahajan, Saurabh Singh, Shaveta Malik

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
mailto:vedangnaik0812@gmail.com
mailto:rohitsahoo741@gmail.com
mailto:sam7736@psu.edu
mailto:srbhsingh39@gmail.com
mailto:shavetamalik687@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B3267.1211221&domain=www.ijeat.org

Exploration-Exploitation Problem in Policy-Based Deep Reinforcement Learning for Episodic and

Continuous Environments

 30

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B32671211221
DOI: 10.35940/ijeat.B3267.1211221
Journal Website: www.ijeat.org

Fig. 1. Deep RL methods schema

The above Fig. 1 shows the schema of Deep Reinforcement
Learning methods. The issue is that neither exploration nor
exploitation can be done alone without the other faltering.
The agent must experiment with various acts and exceedingly
favor those that seem to be the optimum. Greedy action has
the highest estimated value, and when it is chosen, we say
that you are leveraging your current knowledge of the values
of the actions. If, on the other hand, you choose one of the
non-greedy actions, we call this exploration since it allows
you to enhance your estimate of the non-greedy action's
value. Exploitation is the best way to maximize the predicted
reward on the initial step, while exploration may result in a
higher overall reward in the long run. Value-based,
policy-gradient, and actor-critic methods are all prevalent
ways to train a policy with RL. A value-based method tries to
predict potential benefit from states (state value) or
action-state (action value or q-value) [3].

The agent–environment interaction naturally breaks down
into sub-sequences known as episodes in applications where
there is a natural sense of the final time step. The sole reward
available in this scenario is the immediate reward. Regardless
of how the last episode ended, the following one begins. The
next episode starts regardless of how the previous one
concluded. As a consequence, the episodes can all be
understood to culminate in the same end state, with varied
rewards for various outcomes. This type of task is referred to
as an episodic task. The termination time is a random variable
that fluctuates from episode to episode. On the other hand,
ongoing tasks refer to situations in which the
agent–environment interaction does not naturally break down
into distinct episodes but instead continues indefinitely. In
this case, the agent is equally concerned with delayed
rewards as it is with immediate rewards.

The paper is organized as follows: Section 2 goes over the
environments and the algorithms used. Section 3 goes over
the exploration-exploitation dilemma and various strategies
employed to tackle it in both episodic and continuous tasks.
In Section 4, we see the results of applying the algorithms
discussed in Section 2 on episodic and continuous tasks, and
Section 5 concludes the paper.

II. ENVIRONMENTS AND ALGORITHMS

A. Episodic Environment

Episodic jobs are those that have a defined endpoint (end).
In RL, the interactions between agents and their
environments are referred to as episodes. An inverted
pendulum, also known as a cartpole, is a pendulum with its
center of gravity above its pivot point. It's unstable, but the
pivot point under the center of mass may be adjusted to
manage it.

The goal is to keep the cartpole in balance by applying
appropriate pressures to a pivot point. Repeated attempts to
balance the pole are the natural occurrences in this task. A
cart travels over a frictionless track and is attached to a pole
by an un-actuated joint.

To regulate the mechanism, a force of +1 or -1 is supplied
to the cart. When the pendulum begins to stand, the goal is to
keep it from falling over. You get a +1 bonus for every
timestep the pole stays upright. The episode ends when the
pole is tilted more than 15 degrees from vertical or the cart
moves more than 2.4 units away from the center.

OpenAI Gym's CartPole-v0 is a basic playground for
training and testing Reinforcement Learning algorithms. The
gym is a set of tools for creating and testing reinforcement
learning systems. The gym library is a set of test problems
(environments) that you may use to evaluate your
reinforcement learning systems.

B. Continuous Environment

There is no such thing as a terminal state in a continuous
task. Reinforcement learning may be applied to stock price
prediction since it follows the same principles of using less
previous data and operating in an agent-based system to
forecast greater returns depending on the present
environment. Because of its dynamic nature, learning just
from past data is insufficient; the model must learn
continually.

Stock price prediction is a challenging task since it moves
quickly and data is frequently limited. DRL would help
determine the best solutions to such complex decision
problems, and it may be a better option for stock price
prediction and enhance expected return. In addition, deep
learning algorithms are capable of extracting features from
raw data with many parameters. The data comes from Yahoo
Finance and includes the price history and trading volumes of
Google stocks from 2011 through 2021.

C. Algorithms

In our experiment, we used Deep Q-Network (DQN),
Double Deep Q-Network (DDQN), and Dueling Deep
Q-Network (Dueling DQN) for continuous tasks to automate
stock price prediction as well as for episodic tasks to keep the
pendulum start vertical and prevent it from collapsing. To
learn the parameters θ of the policy function πθ(at|st), a

plethora of reinforcement learning algorithms are applicable
[4].

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-11 Issue-2, December 2021

 31

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B32671211221
DOI: 10.35940/ijeat.B3267.1211221
Journal Website: www.ijeat.org

Fig. 2. Deep Q Network Model Structure

A. Deep Q-Network

It's a system for sequential decision-making that uses
reinforcement learning. Learning has as its goal the discovery
of the optimum policy that maximizes long-term advantages.
The agent is rewarded rt for taking action depending on the
present condition st of the environment. The experience
replay is utilized to remember former states, actions, rewards,
and forthcoming states to understand previous events. Data
from the replay memory is randomly selected and sent to the
train network in small batches to minimize the error. DQN
adds up all activities that contribute to an overstatement of
the Q-value as the number of iterations increases and the
mistakes accumulate [5]. In DQN, the Q network is leveraged
to learn the projected future reward Q-value function (Q(st,
at)). The Deep Q-Network differs from the standard
Q-learning algorithm because it uses a new
Target-Q-Network, which is provided by:

Qtarget = rt+1 + 𝛾max a’ [Q(st, at ; θ)]

Where parameters of Q network are defined by θ. The

target Q-Network is distinct from the general Q-Network,
which is continually modified. The network values of the
target Q-Network are continuously updated and duplicate the
values of the main network. When the incoming data rate is
high, and the training data is strongly correlated, using only
one Q-Network in the model results in delayed or
sub-optimal convergence, as well as an imbalanced target
function. Using two distinct Q-Networks improves the
Q-stability to choose and evaluate the actions; the ideal
Q-value or action-value pair is determined. DQN adds up all
activities that contribute to an overstatement of the Q-value
since mistakes add up as the number of epochs increases [6].
The Double DQN neural network solves the overstatement of
Q-value by using another neural network that optimizes the
impact of inaccuracy.

B. Double Deep Q-Network

When actions are made based on a Target Q-Network, the
problem of overstatement becomes more significant since the
Target Q-values of the network are not continually updated.
Because it gives additional stability to the target values for
updates, Double DQN utilizes two neural networks with the
same structure as DQN, the main network, and the target
network. The action in DDQN is picked according to the
main Q network, yet it employs the target state-action value.
This value comes from the Target Q network that matches to
that specific state-action. Thus, all action-value pairs for all

possible actions in the current state are upgraded at each time
interval and step.

Qtarget = rt+1 + 𝛾Q(st, argmax a’Q(st, at ; θ); θ’)

C. Dueling Double Deep Q-Network

When compared to DQN, Dueling DQN has a different
network topology. Dueling DQN employs a customized
Dueling Q Head to split Q into an A (advantage) and a V
stream. Incorporating this sort of structure to the network
head helps it distinguish actions from each other, which
increases learning substantially.

In many situations, the rewards of many actions are
relatively comparable, making it less essential which action
to perform. This is especially crucial in cases where there are
several options. In DQN, we update the Q values solely for
the particular actions done in those states throughout each
training step for every state in the batch. This causes delayed
learning since we do not learn the Q values for activities that
have not yet been done [7]. Learning on dueling architecture
is quicker since we begin learning the state-value; a single
action has been done at this stage.

III. EXPLORATION-EXPLOITATION DILEMMA

Exploration and exploitation are two critical ideas in
reinforcement learning. However, exploration and
exploitation are two mutually exclusive components.
Exploration is the process of selecting activities that have
never been done before to discover new possibilities [8].
Exploitation refers to the selection of activities taken to
improve the models of known actions and to make use of
previously acquired information [9]. The difficulty is that
determining the best long-term plan may necessitate making
short-term compromises, and making the best overall
judgments typically necessitates having sufficient
knowledge. In RL, finding a balance between exploration and
exploitation is a major topic and difficulty. Many techniques
have been explored in previous studies to make this trade-off:

 Greedy Policy: The agent will do the action with the
highest Q value at any point in the environment. This is a
naïve way of guaranteeing that the agent performs the best
possible action at each stage. The method's apparent flaw is
that the agent will never witness the consequence of any
action other than the ideal one. This invariably results in a
less-than-ideal answer.

 Epsilon-Greedy Policy: This is the most frequently used
exploration approach, and it consists of a mix of random
operations with probability and greedy operations when not.
By traveling to an unknown area of the state space, the agent
can conduct actions that give new knowledge. The variable is
changeable, and it is usually set to a high value at first, then
gradually reduced to a low one. Despite its widespread use,
this technique is far from ideal, as it simply considers whether
activities are most beneficial or not.

 Boltzmann Policy: Rather than constantly picking the
best approach or acting randomly, this method includes
selecting a course of action based on weighted probability.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Exploration-Exploitation Problem in Policy-Based Deep Reinforcement Learning for Episodic and

Continuous Environments

 32

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B32671211221
DOI: 10.35940/ijeat.B3267.1211221
Journal Website: www.ijeat.org

This is achieved by applying a SoftMax to all of the Q
values at any given state. As a result, the agent is more likely
to choose the action that is most likely to be optimum. The
plurality of RL algorithms employs a point estimate of the
Q-function to determine such an optimum policy Q(s, a) [10].

𝜋(𝑎|𝑠) =
𝑒𝑥𝑝(𝑄(𝑠, 𝑎)/𝝉)

∑ 𝑒𝑥𝑝(𝑄(𝑠, 𝑖)/𝝉)𝑛
𝑖=1

A. Cartpole Problem

Fig. 3. Cartpole problem model structure

The above Fig. 3 shows the model structure of Cartpole
problem. The state vector for this system x is a
four-dimensional vector with components {x, x’, θ, θ’}.

There are two states to the action: left (0) and right (1). The
episode ends when

• the pole angle is higher or lesser than 12 degrees from
the vertical axis

• the cart location is greater than 2.4 cm from the center
• the episode duration is greater than 200
The agent is rewarded one point for each step completed,

including the termination step. The issue is declared solved if
the average reward across 100 episodes is more than or equal
to 195. Exploration for this problem involves moving the cart
in a random direction and noting the results of this action. In
contrast, exploitation involves taking into account the current
state of the pole and then acting in a way that is appropriate
based on the strategy chosen from above.

B. Stock Market Prediction

Stock price prediction is a difficult undertaking since the
stock market moves fast and data is sometimes inadequate or
insufficient [11]. One approach for resolving such
complicated choice issues is reinforcement learning. The
state, action, and reward are defined in this section, as well as
how we represent the stock trading issue as an MDP.

Fig. 4. Stock Market prediction model structure

• State s: the state is defined as the daily adjusted closing
data.

St = [Pt-20, Pt- l9,, Pt-2, Pt-l]
pt represents the adjusted close price of day t.
• Action a: Only three values [1,0, -1] are accessible in

the action space, indicating purchase, do nothing, and sell for
one stock, respectively. We also define taking an action as
trading one share of stock with the prices of the current day's
adjusted close and automatically closing the position with the
price of the following day's adjusted close because we focus
on the daily trading process.

• Reward r: the reward is calculated by the difference
between next day’s adjusted close and the current day’s

adjusted close.
rt = (pt+l - pt) * action – value
We start by initializing the parameters of Q-networks with

a modest batch of training data. The state is then utilized as
the input to the Q-network on each trading day, with the Q
values for three possible actions as the output. The agent will
be rewarded if he picks the action with the highest value with
a probability of (1 - e).

The trade sample (s, a, r, s') will be saved in the buffer after
that. Because the daily training sample is very tiny for a deep
neural network, overfitting is a possibility. We keep three
samples with three distinct rewards in the buffer to enrich the
data used for updating the Q-network parameters and make
the updating more reliable.

After that, the total reward is computed, and a random
number of batch-size samples from the buffer are taken to
update the Q network settings. The entire procedure will be
repeated until the conclusion of the test data, at which point a
cumulative reward will be acquired.

In this problem, exploration is done by purchasing, selling,
or keeping a stock at random, but exploitation is done by
using prior experience and behaving in a way that maximizes
long-term profit.

IV. RESULTS AND PERFORMANCE

Exploration-Exploitation in Episodic Task

OpenAI Gym's CartPole-v1 is used for training and testing
three deep Q-networks.

The dataset is trained for 5000 steps. To approximate 𝑄,
one traditional method is creating a lookup table where the
values of 𝑄 are updated after each agent's actions.

However, this approach is slow and does not scale to
significant action and state spaces. Since neural networks are
universal function approximators, we will train a network
that can approximate 𝑄.

A simple neural network was implemented using
TensorFlow Keras, having four dense layers with activation
function as ReLU. The network takes the agent's state as an
input and returns the 𝑄 values for each action. The agent
selects the maximum 𝑄 value to perform the following
action.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-11 Issue-2, December 2021

 33

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B32671211221
DOI: 10.35940/ijeat.B3267.1211221
Journal Website: www.ijeat.org

Fig. 5. DQN Cartpole

Fig. 6. Double DQN Cartpole

Fig. 7. Dueling DQN Cartpole

The cartpole is tested for various policies such as Greedy Q

policy, Epsilon Greedy Q policy, and Boltzmann policy.
Fig.5, Fig. 6 and Fig. 7 shows the training rewards for
number of steps with the help of DQN, Double DQN, and
Dueling DQN. The training is done for 5000 steps and testing
is done for five episodes. The testing rewards can be seen in
Table 1; the reward shows the best reward among the five
testing episodes.

Table 1. Cartpole Results

 Reward Training Steps Testing Episodes
DQN 459 5000 5

DDQN 383 5000 5
Dueling

DQN
500 5000 5

Exploration-Exploitation in Continuous Task

The studies are carried out using Google stock datasets and
three DQN-based RL Algorithms. These algorithms are used
to determine the total rewards and profit from training and
testing data for Google stocks. Training data was collected
for 2400 days to understand how the algorithm performs, and
test data was collected for 117 days. Then after using all the
data, we can predict for the next day by moving the window,
where the window length is of 5 days, i.e., five days of data is
used to predict the next day. The Google stock dataset is used
to illustrate the training rewards about the steps it was trained
for. The testing rewards can be seen in Table 1, the total profit
and reward that was made for the next day after the total days
in the dataset.

Fig. 8. DQN Stock Market Prediction

Fig. 9. DDQN Stock Market Prediction

Fig. 10. Dueling DQN Stock Market Prediction

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Exploration-Exploitation Problem in Policy-Based Deep Reinforcement Learning for Episodic and

Continuous Environments

 34

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B32671211221
DOI: 10.35940/ijeat.B3267.1211221
Journal Website: www.ijeat.org

Table 2. Stock Market Results

 Reward
Total
Profit

Time
steps

Profit
%

DQN 82.3689 1.06 20000 6.20

DDQN 79.6069 1.018 20000 1.80

Dueling
DQN

80.34483 1.038 20000 3.80

V. CONCLUSION AND FUTURE SCOPE

In this paper, we give an introduction to the
exploration-exploitation problem and episodic and
continuous tasks. We touched on various forms of Deep Q
Networks. Also, we have looked at the
exploration-exploitation problem in the context of continuous
and episodic tasks of stock market trading and the cartpole
problem, respectively and performed a comparative analysis
on them. In the future, we will implement other
reinforcement algorithms such as A2C, DDPG, PPO to
understand more about exploration-exploitation problems in
different environments.

REFERENCES

1. G. Sokar, E. Mocanu, D. C. Mocanu, M. Pechenizkiy, and P. Stone, Dynamic
Sparse Training for Deep Reinforcement Learning. 2021.

2. P. Danassis, A. Filos-Ratsikas, and B. Faltings, Achieving Diverse Objectives
with AI-driven Prices in Deep Reinforcement Learning Multi-agent Markets.
2021.

3. J. Ault and G. Sharon, “Reinforcement Learning Benchmarks for Traffic

Signal Control,” 2021. [Online]. Available:

https://openreview.net/forum?id=LqRSh6V0vR
4. S. Messaoud, M. Kumar and A. G. Schwing, "Can We Learn Heuristics for

Graphical Model Inference Using Reinforcement Learning?," 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 7586-7596, doi: 10.1109/CVPR42600.2020.00761.

5. H. van Hasselt, A. Guez, and D. Silver, Deep Reinforcement Learning with
Double Q-learning. 2015.

6. T. Matiisen, Institute of Computer Science, University of Tartu,
https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/ (accessed:
2015).

7. S. Ishii, W. Yoshida, and J. Yoshimoto, “Control of exploitation–exploration
meta-parameter in reinforcement learning,” Neural Networks, vol. 15, no. 4,
pp. 665–687, 2002.

8. R. Sutton and A. Barto, Reinforcement Learning: An Introduction, Zweite.
MIT Press, 2018.

9. N. Nikolov, J. Kirschner, F. Berkenkamp, and A. Krause,
Information-Directed Exploration for Deep Reinforcement Learning. 2019.

10. J. W. Lee, “Stock price prediction using reinforcement learning,” in ISIE
2001. 2001 IEEE International Symposium on Industrial Electronics
Proceedings (Cat. No.01TH8570), 2001, vol. 1, pp. 690–695 vol.1. doi:
10.1109/ISIE.2001.931880.

AUTHORS PROFILE

Vedang Naik is an engineer with a bachelor’s degree

in Computer Engineering from the Terna Engineering
College, University of Mumbai, Navi-Mumbai, India.
His research interests are in Deep Learning, Natural
Language Processing, Neural Networks and Machine
Learning.

Rohit Sahoo is an engineer with a bachelor’s degree in
Computer Engineering from the Terna Engineering
College, University of Mumbai, Navi-Mumbai, India.
His research interests are in Machine Learning, Deep
Learning, Data Science and Big Data.

Saurabh Singh is an engineer with a bachelor’s
degree in Computer Engineering from the Terna
Engineering College, University of Mumbai,
Navi-Mumbai, India. His research interests are in
Data Mining, Machine Learning, Recommender
Systems, and Data Science.

Sameer Mahajan is currently pursuing master’s

degree in Data Analytics from the Penn State
University, Pennsylvania, USA. His research interests
are in Differential Privacy, Machine Learning,
Federated Learning, and Data Science.

Dr. Shaveta Malik is working as Associate
Professor at Computer Engineering Department at
Terna Engineering College, Navi-Mumbai, India.
She has presented several papers in international
conferences. Her research interests are in Artificial
Intelligence, Machine Learning and Image

Processing.

http://www.ijeat.org/
https://openreview.net/forum?id=LqRSh6V0vR
https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/

